⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dtoa.cpp

📁 linux下开源浏览器WebKit的源码,市面上的很多商用浏览器都是移植自WebKit
💻 CPP
📖 第 1 页 / 共 5 页
字号:
/**************************************************************** * * The author of this software is David M. Gay. * * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. * Copyright (C) 2002, 2005, 2006, 2007, 2008 Apple Inc. All rights reserved. * * Permission to use, copy, modify, and distribute this software for any * purpose without fee is hereby granted, provided that this entire notice * is included in all copies of any software which is or includes a copy * or modification of this software and in all copies of the supporting * documentation for such software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. * ***************************************************************//* Please send bug reports to    David M. Gay    Bell Laboratories, Room 2C-463    600 Mountain Avenue    Murray Hill, NJ 07974-0636    U.S.A.    dmg@bell-labs.com *//* On a machine with IEEE extended-precision registers, it is * necessary to specify double-precision (53-bit) rounding precision * before invoking strtod or dtoa.  If the machine uses (the equivalent * of) Intel 80x87 arithmetic, the call *    _control87(PC_53, MCW_PC); * does this with many compilers.  Whether this or another call is * appropriate depends on the compiler; for this to work, it may be * necessary to #include "float.h" or another system-dependent header * file. *//* strtod for IEEE-arithmetic machines. * * This strtod returns a nearest machine number to the input decimal * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are * broken by the IEEE round-even rule.  Otherwise ties are broken by * biased rounding (add half and chop). * * Inspired loosely by William D. Clinger's paper "How to Read Floating * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: * *    1. We only require IEEE. *    2. We get by with floating-point arithmetic in a case that *        Clinger missed -- when we're computing d * 10^n *        for a small integer d and the integer n is not too *        much larger than 22 (the maximum integer k for which *        we can represent 10^k exactly), we may be able to *        compute (d*10^k) * 10^(e-k) with just one roundoff. *    3. Rather than a bit-at-a-time adjustment of the binary *        result in the hard case, we use floating-point *        arithmetic to determine the adjustment to within *        one bit; only in really hard cases do we need to *        compute a second residual. *    4. Because of 3., we don't need a large table of powers of 10 *        for ten-to-e (just some small tables, e.g. of 10^k *        for 0 <= k <= 22). *//* * #define IEEE_8087 for IEEE-arithmetic machines where the least *    significant byte has the lowest address. * #define IEEE_MC68k for IEEE-arithmetic machines where the most *    significant byte has the lowest address. * #define No_leftright to omit left-right logic in fast floating-point *    computation of dtoa. * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 *    and Honor_FLT_ROUNDS is not #defined. * #define Inaccurate_Divide for IEEE-format with correctly rounded *    products but inaccurate quotients, e.g., for Intel i860. * #define USE_LONG_LONG on machines that have a "long long" *    integer type (of >= 64 bits), and performance testing shows that *    it is faster than 32-bit fallback (which is often not the case *    on 32-bit machines). On such machines, you can #define Just_16 *    to store 16 bits per 32-bit int32_t when doing high-precision integer *    arithmetic.  Whether this speeds things up or slows things down *    depends on the machine and the number being converted. * #define Bad_float_h if your system lacks a float.h or if it does not *    define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, *    FLT_RADIX, FLT_ROUNDS, and DBL_MAX. * #define INFNAN_CHECK on IEEE systems to cause strtod to check for *    Infinity and NaN (case insensitively).  On some systems (e.g., *    some HP systems), it may be necessary to #define NAN_WORD0 *    appropriately -- to the most significant word of a quiet NaN. *    (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) *    When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, *    strtod also accepts (case insensitively) strings of the form *    NaN(x), where x is a string of hexadecimal digits and spaces; *    if there is only one string of hexadecimal digits, it is taken *    for the 52 fraction bits of the resulting NaN; if there are two *    or more strings of hex digits, the first is for the high 20 bits, *    the second and subsequent for the low 32 bits, with intervening *    white space ignored; but if this results in none of the 52 *    fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 *    and NAN_WORD1 are used instead. * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that *    avoids underflows on inputs whose result does not underflow. *    If you #define NO_IEEE_Scale on a machine that uses IEEE-format *    floating-point numbers and flushes underflows to zero rather *    than implementing gradual underflow, then you must also #define *    Sudden_Underflow. * #define YES_ALIAS to permit aliasing certain double values with *    arrays of ULongs.  This leads to slightly better code with *    some compilers and was always used prior to 19990916, but it *    is not strictly legal and can cause trouble with aggressively *    optimizing compilers (e.g., gcc 2.95.1 under -O2). * #define SET_INEXACT if IEEE arithmetic is being used and extra *    computation should be done to set the inexact flag when the *    result is inexact and avoid setting inexact when the result *    is exact.  In this case, dtoa.c must be compiled in *    an environment, perhaps provided by #include "dtoa.c" in a *    suitable wrapper, that defines two functions, *        int get_inexact(void); *        void clear_inexact(void); *    such that get_inexact() returns a nonzero value if the *    inexact bit is already set, and clear_inexact() sets the *    inexact bit to 0.  When SET_INEXACT is #defined, strtod *    also does extra computations to set the underflow and overflow *    flags when appropriate (i.e., when the result is tiny and *    inexact or when it is a numeric value rounded to +-infinity). * #define NO_ERRNO if strtod should not assign errno = ERANGE when *    the result overflows to +-Infinity or underflows to 0. */#include "config.h"#include "dtoa.h"#if HAVE(ERRNO_H)#include <errno.h>#else#define NO_ERRNO#endif#include <float.h>#include <math.h>#include <stdint.h>#include <stdlib.h>#include <string.h>#include <wtf/AlwaysInline.h>#include <wtf/Assertions.h>#include <wtf/FastMalloc.h>#include <wtf/Threading.h>#if COMPILER(MSVC)#pragma warning(disable: 4244)#pragma warning(disable: 4245)#pragma warning(disable: 4554)#endif#if PLATFORM(BIG_ENDIAN)#define IEEE_MC68k#elif PLATFORM(MIDDLE_ENDIAN)#define IEEE_ARM#else#define IEEE_8087#endif#define INFNAN_CHECK#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_ARM) != 1Exactly one of IEEE_8087, IEEE_ARM or IEEE_MC68k should be defined.#endifnamespace WTF {#if ENABLE(JSC_MULTIPLE_THREADS)Mutex* s_dtoaP5Mutex;#endiftypedef union { double d; uint32_t L[2]; } U;#ifdef YES_ALIAS#define dval(x) x#ifdef IEEE_8087#define word0(x) ((uint32_t*)&x)[1]#define word1(x) ((uint32_t*)&x)[0]#else#define word0(x) ((uint32_t*)&x)[0]#define word1(x) ((uint32_t*)&x)[1]#endif#else#ifdef IEEE_8087#define word0(x) ((U*)&x)->L[1]#define word1(x) ((U*)&x)->L[0]#else#define word0(x) ((U*)&x)->L[0]#define word1(x) ((U*)&x)->L[1]#endif#define dval(x) ((U*)&x)->d#endif/* The following definition of Storeinc is appropriate for MIPS processors. * An alternative that might be better on some machines is * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) */#if defined(IEEE_8087) || defined(IEEE_ARM)#define Storeinc(a,b,c) (((unsigned short*)a)[1] = (unsigned short)b, ((unsigned short*)a)[0] = (unsigned short)c, a++)#else#define Storeinc(a,b,c) (((unsigned short*)a)[0] = (unsigned short)b, ((unsigned short*)a)[1] = (unsigned short)c, a++)#endif#define Exp_shift  20#define Exp_shift1 20#define Exp_msk1    0x100000#define Exp_msk11   0x100000#define Exp_mask  0x7ff00000#define P 53#define Bias 1023#define Emin (-1022)#define Exp_1  0x3ff00000#define Exp_11 0x3ff00000#define Ebits 11#define Frac_mask  0xfffff#define Frac_mask1 0xfffff#define Ten_pmax 22#define Bletch 0x10#define Bndry_mask  0xfffff#define Bndry_mask1 0xfffff#define LSB 1#define Sign_bit 0x80000000#define Log2P 1#define Tiny0 0#define Tiny1 1#define Quick_max 14#define Int_max 14#if !defined(NO_IEEE_Scale)#undef Avoid_Underflow#define Avoid_Underflow#endif#if !defined(Flt_Rounds)#if defined(FLT_ROUNDS)#define Flt_Rounds FLT_ROUNDS#else#define Flt_Rounds 1#endif#endif /*Flt_Rounds*/#define rounded_product(a,b) a *= b#define rounded_quotient(a,b) a /= b#define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1))#define Big1 0xffffffff#ifndef Pack_32#define Pack_32#endif#if PLATFORM(PPC64) || PLATFORM(X86_64)// 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware.#define USE_LONG_LONG#endif#ifndef USE_LONG_LONG#ifdef Just_16#undef Pack_32/* When Pack_32 is not defined, we store 16 bits per 32-bit int32_t. * This makes some inner loops simpler and sometimes saves work * during multiplications, but it often seems to make things slightly * slower.  Hence the default is now to store 32 bits per int32_t. */#endif#endif#define Kmax 15struct Bigint {    struct Bigint* next;    int k, maxwds, sign, wds;    uint32_t x[1];};static Bigint* Balloc(int k){    int x = 1 << k;    Bigint* rv = (Bigint*)fastMalloc(sizeof(Bigint) + (x - 1)*sizeof(uint32_t));    rv->k = k;    rv->maxwds = x;    rv->next = 0;    rv->sign = rv->wds = 0;    return rv;}static void Bfree(Bigint* v){    fastFree(v);}#define Bcopy(x, y) memcpy((char*)&x->sign, (char*)&y->sign, y->wds * sizeof(int32_t) + 2 * sizeof(int))static Bigint* multadd(Bigint* b, int m, int a)    /* multiply by m and add a */{#ifdef USE_LONG_LONG    unsigned long long carry;#else    uint32_t carry;#endif    int wds = b->wds;    uint32_t* x = b->x;    int i = 0;    carry = a;    do {#ifdef USE_LONG_LONG        unsigned long long y = *x * (unsigned long long)m + carry;        carry = y >> 32;        *x++ = (uint32_t)y & 0xffffffffUL;#else#ifdef Pack_32        uint32_t xi = *x;        uint32_t y = (xi & 0xffff) * m + carry;        uint32_t z = (xi >> 16) * m + (y >> 16);        carry = z >> 16;        *x++ = (z << 16) + (y & 0xffff);#else        uint32_t y = *x * m + carry;        carry = y >> 16;        *x++ = y & 0xffff;#endif#endif    } while (++i < wds);    if (carry) {        if (wds >= b->maxwds) {            Bigint* b1 = Balloc(b->k + 1);            Bcopy(b1, b);            Bfree(b);            b = b1;        }        b->x[wds++] = (uint32_t)carry;        b->wds = wds;    }    return b;}static Bigint* s2b(const char* s, int nd0, int nd, uint32_t y9){    int k;    int32_t y;    int32_t x = (nd + 8) / 9;    for (k = 0, y = 1; x > y; y <<= 1, k++) { }#ifdef Pack_32    Bigint* b = Balloc(k);    b->x[0] = y9;    b->wds = 1;#else    Bigint* b = Balloc(k + 1);    b->x[0] = y9 & 0xffff;    b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;#endif    int i = 9;    if (9 < nd0) {        s += 9;        do {            b = multadd(b, 10, *s++ - '0');        } while (++i < nd0);        s++;    } else        s += 10;    for (; i < nd; i++)        b = multadd(b, 10, *s++ - '0');    return b;}static int hi0bits(uint32_t x){    int k = 0;    if (!(x & 0xffff0000)) {        k = 16;        x <<= 16;    }    if (!(x & 0xff000000)) {        k += 8;        x <<= 8;    }    if (!(x & 0xf0000000)) {        k += 4;        x <<= 4;    }    if (!(x & 0xc0000000)) {        k += 2;        x <<= 2;    }    if (!(x & 0x80000000)) {        k++;        if (!(x & 0x40000000))            return 32;    }    return k;}static int lo0bits (uint32_t* y){    int k;    uint32_t x = *y;    if (x & 7) {        if (x & 1)            return 0;        if (x & 2) {            *y = x >> 1;            return 1;        }        *y = x >> 2;        return 2;    }    k = 0;    if (!(x & 0xffff)) {        k = 16;        x >>= 16;    }    if (!(x & 0xff)) {        k += 8;        x >>= 8;    }    if (!(x & 0xf)) {        k += 4;        x >>= 4;    }    if (!(x & 0x3)) {        k += 2;        x >>= 2;    }    if (!(x & 1)) {        k++;        x >>= 1;        if (!x & 1)            return 32;    }    *y = x;    return k;}static Bigint* i2b(int i){    Bigint* b;    b = Balloc(1);    b->x[0] = i;    b->wds = 1;    return b;}static Bigint* mult(Bigint* a, Bigint* b){    Bigint* c;    int k, wa, wb, wc;    uint32_t *x, *xa, *xae, *xb, *xbe, *xc, *xc0;    uint32_t y;#ifdef USE_LONG_LONG    unsigned long long carry, z;#else    uint32_t carry, z;#endif    if (a->wds < b->wds) {        c = a;        a = b;        b = c;    }    k = a->k;    wa = a->wds;    wb = b->wds;    wc = wa + wb;    if (wc > a->maxwds)        k++;    c = Balloc(k);    for (x = c->x, xa = x + wc; x < xa; x++)        *x = 0;    xa = a->x;    xae = xa + wa;    xb = b->x;    xbe = xb + wb;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -