📄 v8-deltablue.js
字号:
* S c a l e C o n s t r a i n t * --- *//** * Relates two variables by the linear scaling relationship: "v2 = * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain * this relationship but the scale factor and offset are considered * read-only. */function ScaleConstraint(src, scale, offset, dest, strength) { this.direction = Direction.NONE; this.scale = scale; this.offset = offset; ScaleConstraint.superConstructor.call(this, src, dest, strength);}ScaleConstraint.inherits(BinaryConstraint);/** * Adds this constraint to the constraint graph. */ScaleConstraint.prototype.addToGraph = function () { ScaleConstraint.superConstructor.prototype.addToGraph.call(this); this.scale.addConstraint(this); this.offset.addConstraint(this);}ScaleConstraint.prototype.removeFromGraph = function () { ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this); if (this.scale != null) this.scale.removeConstraint(this); if (this.offset != null) this.offset.removeConstraint(this);}ScaleConstraint.prototype.markInputs = function (mark) { ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark); this.scale.mark = this.offset.mark = mark;}/** * Enforce this constraint. Assume that it is satisfied. */ScaleConstraint.prototype.execute = function () { if (this.direction == Direction.FORWARD) { this.v2.value = this.v1.value * this.scale.value + this.offset.value; } else { this.v1.value = (this.v2.value - this.offset.value) / this.scale.value; }}/** * Calculate the walkabout strength, the stay flag, and, if it is * 'stay', the value for the current output of this constraint. Assume * this constraint is satisfied. */ScaleConstraint.prototype.recalculate = function () { var ihn = this.input(), out = this.output(); out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); out.stay = ihn.stay && this.scale.stay && this.offset.stay; if (out.stay) this.execute();}/* --- * * E q u a l i t y C o n s t r a i n t * --- *//** * Constrains two variables to have the same value. */function EqualityConstraint(var1, var2, strength) { EqualityConstraint.superConstructor.call(this, var1, var2, strength);}EqualityConstraint.inherits(BinaryConstraint);/** * Enforce this constraint. Assume that it is satisfied. */EqualityConstraint.prototype.execute = function () { this.output().value = this.input().value;}/* --- * * V a r i a b l e * --- *//** * A constrained variable. In addition to its value, it maintain the * structure of the constraint graph, the current dataflow graph, and * various parameters of interest to the DeltaBlue incremental * constraint solver. **/function Variable(name, initialValue) { this.value = initialValue || 0; this.constraints = new OrderedCollection(); this.determinedBy = null; this.mark = 0; this.walkStrength = Strength.WEAKEST; this.stay = true; this.name = name;}/** * Add the given constraint to the set of all constraints that refer * this variable. */Variable.prototype.addConstraint = function (c) { this.constraints.add(c);}/** * Removes all traces of c from this variable. */Variable.prototype.removeConstraint = function (c) { this.constraints.remove(c); if (this.determinedBy == c) this.determinedBy = null;}/* --- * * P l a n n e r * --- *//** * The DeltaBlue planner */function Planner() { this.currentMark = 0;}/** * Attempt to satisfy the given constraint and, if successful, * incrementally update the dataflow graph. Details: If satifying * the constraint is successful, it may override a weaker constraint * on its output. The algorithm attempts to resatisfy that * constraint using some other method. This process is repeated * until either a) it reaches a variable that was not previously * determined by any constraint or b) it reaches a constraint that * is too weak to be satisfied using any of its methods. The * variables of constraints that have been processed are marked with * a unique mark value so that we know where we've been. This allows * the algorithm to avoid getting into an infinite loop even if the * constraint graph has an inadvertent cycle. */Planner.prototype.incrementalAdd = function (c) { var mark = this.newMark(); var overridden = c.satisfy(mark); while (overridden != null) overridden = overridden.satisfy(mark);}/** * Entry point for retracting a constraint. Remove the given * constraint and incrementally update the dataflow graph. * Details: Retracting the given constraint may allow some currently * unsatisfiable downstream constraint to be satisfied. We therefore collect * a list of unsatisfied downstream constraints and attempt to * satisfy each one in turn. This list is traversed by constraint * strength, strongest first, as a heuristic for avoiding * unnecessarily adding and then overriding weak constraints. * Assume: c is satisfied. */Planner.prototype.incrementalRemove = function (c) { var out = c.output(); c.markUnsatisfied(); c.removeFromGraph(); var unsatisfied = this.removePropagateFrom(out); var strength = Strength.REQUIRED; do { for (var i = 0; i < unsatisfied.size(); i++) { var u = unsatisfied.at(i); if (u.strength == strength) this.incrementalAdd(u); } strength = strength.nextWeaker(); } while (strength != Strength.WEAKEST);}/** * Select a previously unused mark value. */Planner.prototype.newMark = function () { return ++this.currentMark;}/** * Extract a plan for resatisfaction starting from the given source * constraints, usually a set of input constraints. This method * assumes that stay optimization is desired; the plan will contain * only constraints whose output variables are not stay. Constraints * that do no computation, such as stay and edit constraints, are * not included in the plan. * Details: The outputs of a constraint are marked when it is added * to the plan under construction. A constraint may be appended to * the plan when all its input variables are known. A variable is * known if either a) the variable is marked (indicating that has * been computed by a constraint appearing earlier in the plan), b) * the variable is 'stay' (i.e. it is a constant at plan execution * time), or c) the variable is not determined by any * constraint. The last provision is for past states of history * variables, which are not stay but which are also not computed by * any constraint. * Assume: sources are all satisfied. */Planner.prototype.makePlan = function (sources) { var mark = this.newMark(); var plan = new Plan(); var todo = sources; while (todo.size() > 0) { var c = todo.removeFirst(); if (c.output().mark != mark && c.inputsKnown(mark)) { plan.addConstraint(c); c.output().mark = mark; this.addConstraintsConsumingTo(c.output(), todo); } } return plan;}/** * Extract a plan for resatisfying starting from the output of the * given constraints, usually a set of input constraints. */Planner.prototype.extractPlanFromConstraints = function (constraints) { var sources = new OrderedCollection(); for (var i = 0; i < constraints.size(); i++) { var c = constraints.at(i); if (c.isInput() && c.isSatisfied()) // not in plan already and eligible for inclusion sources.add(c); } return this.makePlan(sources);}/** * Recompute the walkabout strengths and stay flags of all variables * downstream of the given constraint and recompute the actual * values of all variables whose stay flag is true. If a cycle is * detected, remove the given constraint and answer * false. Otherwise, answer true. * Details: Cycles are detected when a marked variable is * encountered downstream of the given constraint. The sender is * assumed to have marked the inputs of the given constraint with * the given mark. Thus, encountering a marked node downstream of * the output constraint means that there is a path from the * constraint's output to one of its inputs. */Planner.prototype.addPropagate = function (c, mark) { var todo = new OrderedCollection(); todo.add(c); while (todo.size() > 0) { var d = todo.removeFirst(); if (d.output().mark == mark) { this.incrementalRemove(c); return false; } d.recalculate(); this.addConstraintsConsumingTo(d.output(), todo); } return true;}/** * Update the walkabout strengths and stay flags of all variables * downstream of the given constraint. Answer a collection of * unsatisfied constraints sorted in order of decreasing strength. */Planner.prototype.removePropagateFrom = function (out) { out.determinedBy = null; out.walkStrength = Strength.WEAKEST; out.stay = true; var unsatisfied = new OrderedCollection(); var todo = new OrderedCollection(); todo.add(out); while (todo.size() > 0) { var v = todo.removeFirst(); for (var i = 0; i < v.constraints.size(); i++) { var c = v.constraints.at(i); if (!c.isSatisfied()) unsatisfied.add(c); } var determining = v.determinedBy; for (var i = 0; i < v.constraints.size(); i++) { var next = v.constraints.at(i); if (next != determining && next.isSatisfied()) { next.recalculate(); todo.add(next.output()); } } } return unsatisfied;}Planner.prototype.addConstraintsConsumingTo = function (v, coll) { var determining = v.determinedBy; var cc = v.constraints; for (var i = 0; i < cc.size(); i++) { var c = cc.at(i); if (c != determining && c.isSatisfied()) coll.add(c); }}/* --- * * P l a n * --- *//** * A Plan is an ordered list of constraints to be executed in sequence * to resatisfy all currently satisfiable constraints in the face of * one or more changing inputs. */function Plan() { this.v = new OrderedCollection();}Plan.prototype.addConstraint = function (c) { this.v.add(c);}Plan.prototype.size = function () { return this.v.size();}Plan.prototype.constraintAt = function (index) { return this.v.at(index);}Plan.prototype.execute = function () { for (var i = 0; i < this.size(); i++) { var c = this.constraintAt(i); c.execute(); }}/* --- * * M a i n * --- *//** * This is the standard DeltaBlue benchmark. A long chain of equality * constraints is constructed with a stay constraint on one end. An * edit constraint is then added to the opposite end and the time is * measured for adding and removing this constraint, and extracting * and executing a constraint satisfaction plan. There are two cases. * In case 1, the added constraint is stronger than the stay * constraint and values must propagate down the entire length of the * chain. In case 2, the added constraint is weaker than the stay * constraint so it cannot be accomodated. The cost in this case is, * of course, very low. Typical situations lie somewhere between these * two extremes. */function chainTest(n) { planner = new Planner(); var prev = null, first = null, last = null; // Build chain of n equality constraints for (var i = 0; i <= n; i++) { var name = "v" + i; var v = new Variable(name); if (prev != null) new EqualityConstraint(prev, v, Strength.REQUIRED); if (i == 0) first = v; if (i == n) last = v; prev = v; } new StayConstraint(last, Strength.STRONG_DEFAULT); var edit = new EditConstraint(first, Strength.PREFERRED); var edits = new OrderedCollection(); edits.add(edit); var plan = planner.extractPlanFromConstraints(edits); for (var i = 0; i < 100; i++) { first.value = i; plan.execute(); if (last.value != i) alert("Chain test failed."); }}/** * This test constructs a two sets of variables related to each * other by a simple linear transformation (scale and offset). The * time is measured to change a variable on either side of the * mapping and to change the scale and offset factors. */function projectionTest(n) { planner = new Planner(); var scale = new Variable("scale", 10); var offset = new Variable("offset", 1000); var src = null, dst = null; var dests = new OrderedCollection(); for (var i = 0; i < n; i++) { src = new Variable("src" + i, i); dst = new Variable("dst" + i, i); dests.add(dst); new StayConstraint(src, Strength.NORMAL); new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED); } change(src, 17); if (dst.value != 1170) alert("Projection 1 failed"); change(dst, 1050); if (src.value != 5) alert("Projection 2 failed"); change(scale, 5); for (var i = 0; i < n - 1; i++) { if (dests.at(i).value != i * 5 + 1000) alert("Projection 3 failed"); } change(offset, 2000); for (var i = 0; i < n - 1; i++) { if (dests.at(i).value != i * 5 + 2000) alert("Projection 4 failed"); }}function change(v, newValue) { var edit = new EditConstraint(v, Strength.PREFERRED); var edits = new OrderedCollection(); edits.add(edit); var plan = planner.extractPlanFromConstraints(edits); for (var i = 0; i < 10; i++) { v.value = newValue; plan.execute(); } edit.destroyConstraint();}// Global variable holding the current planner.var planner = null;function deltaBlue() { chainTest(100); projectionTest(100);}for (var i = 0; i < 155; ++i) deltaBlue();
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -