⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 v8-deltablue.js

📁 linux下开源浏览器WebKit的源码,市面上的很多商用浏览器都是移植自WebKit
💻 JS
📖 第 1 页 / 共 2 页
字号:
 * S c a l e   C o n s t r a i n t * --- *//** * Relates two variables by the linear scaling relationship: "v2 = * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain * this relationship but the scale factor and offset are considered * read-only. */function ScaleConstraint(src, scale, offset, dest, strength) {  this.direction = Direction.NONE;  this.scale = scale;  this.offset = offset;  ScaleConstraint.superConstructor.call(this, src, dest, strength);}ScaleConstraint.inherits(BinaryConstraint);/** * Adds this constraint to the constraint graph. */ScaleConstraint.prototype.addToGraph = function () {  ScaleConstraint.superConstructor.prototype.addToGraph.call(this);  this.scale.addConstraint(this);  this.offset.addConstraint(this);}ScaleConstraint.prototype.removeFromGraph = function () {  ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this);  if (this.scale != null) this.scale.removeConstraint(this);  if (this.offset != null) this.offset.removeConstraint(this);}ScaleConstraint.prototype.markInputs = function (mark) {  ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark);  this.scale.mark = this.offset.mark = mark;}/** * Enforce this constraint. Assume that it is satisfied. */ScaleConstraint.prototype.execute = function () {  if (this.direction == Direction.FORWARD) {    this.v2.value = this.v1.value * this.scale.value + this.offset.value;  } else {    this.v1.value = (this.v2.value - this.offset.value) / this.scale.value;  }}/** * Calculate the walkabout strength, the stay flag, and, if it is * 'stay', the value for the current output of this constraint. Assume * this constraint is satisfied. */ScaleConstraint.prototype.recalculate = function () {  var ihn = this.input(), out = this.output();  out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);  out.stay = ihn.stay && this.scale.stay && this.offset.stay;  if (out.stay) this.execute();}/* --- * * E q u a l i t  y   C o n s t r a i n t * --- *//** * Constrains two variables to have the same value. */function EqualityConstraint(var1, var2, strength) {  EqualityConstraint.superConstructor.call(this, var1, var2, strength);}EqualityConstraint.inherits(BinaryConstraint);/** * Enforce this constraint. Assume that it is satisfied. */EqualityConstraint.prototype.execute = function () {  this.output().value = this.input().value;}/* --- * * V a r i a b l e * --- *//** * A constrained variable. In addition to its value, it maintain the * structure of the constraint graph, the current dataflow graph, and * various parameters of interest to the DeltaBlue incremental * constraint solver. **/function Variable(name, initialValue) {  this.value = initialValue || 0;  this.constraints = new OrderedCollection();  this.determinedBy = null;  this.mark = 0;  this.walkStrength = Strength.WEAKEST;  this.stay = true;  this.name = name;}/** * Add the given constraint to the set of all constraints that refer * this variable. */Variable.prototype.addConstraint = function (c) {  this.constraints.add(c);}/** * Removes all traces of c from this variable. */Variable.prototype.removeConstraint = function (c) {  this.constraints.remove(c);  if (this.determinedBy == c) this.determinedBy = null;}/* --- * * P l a n n e r * --- *//** * The DeltaBlue planner */function Planner() {  this.currentMark = 0;}/** * Attempt to satisfy the given constraint and, if successful, * incrementally update the dataflow graph.  Details: If satifying * the constraint is successful, it may override a weaker constraint * on its output. The algorithm attempts to resatisfy that * constraint using some other method. This process is repeated * until either a) it reaches a variable that was not previously * determined by any constraint or b) it reaches a constraint that * is too weak to be satisfied using any of its methods. The * variables of constraints that have been processed are marked with * a unique mark value so that we know where we've been. This allows * the algorithm to avoid getting into an infinite loop even if the * constraint graph has an inadvertent cycle. */Planner.prototype.incrementalAdd = function (c) {  var mark = this.newMark();  var overridden = c.satisfy(mark);  while (overridden != null)    overridden = overridden.satisfy(mark);}/** * Entry point for retracting a constraint. Remove the given * constraint and incrementally update the dataflow graph. * Details: Retracting the given constraint may allow some currently * unsatisfiable downstream constraint to be satisfied. We therefore collect * a list of unsatisfied downstream constraints and attempt to * satisfy each one in turn. This list is traversed by constraint * strength, strongest first, as a heuristic for avoiding * unnecessarily adding and then overriding weak constraints. * Assume: c is satisfied. */Planner.prototype.incrementalRemove = function (c) {  var out = c.output();  c.markUnsatisfied();  c.removeFromGraph();  var unsatisfied = this.removePropagateFrom(out);  var strength = Strength.REQUIRED;  do {    for (var i = 0; i < unsatisfied.size(); i++) {      var u = unsatisfied.at(i);      if (u.strength == strength)        this.incrementalAdd(u);    }    strength = strength.nextWeaker();  } while (strength != Strength.WEAKEST);}/** * Select a previously unused mark value. */Planner.prototype.newMark = function () {  return ++this.currentMark;}/** * Extract a plan for resatisfaction starting from the given source * constraints, usually a set of input constraints. This method * assumes that stay optimization is desired; the plan will contain * only constraints whose output variables are not stay. Constraints * that do no computation, such as stay and edit constraints, are * not included in the plan. * Details: The outputs of a constraint are marked when it is added * to the plan under construction. A constraint may be appended to * the plan when all its input variables are known. A variable is * known if either a) the variable is marked (indicating that has * been computed by a constraint appearing earlier in the plan), b) * the variable is 'stay' (i.e. it is a constant at plan execution * time), or c) the variable is not determined by any * constraint. The last provision is for past states of history * variables, which are not stay but which are also not computed by * any constraint. * Assume: sources are all satisfied. */Planner.prototype.makePlan = function (sources) {  var mark = this.newMark();  var plan = new Plan();  var todo = sources;  while (todo.size() > 0) {    var c = todo.removeFirst();    if (c.output().mark != mark && c.inputsKnown(mark)) {      plan.addConstraint(c);      c.output().mark = mark;      this.addConstraintsConsumingTo(c.output(), todo);    }  }  return plan;}/** * Extract a plan for resatisfying starting from the output of the * given constraints, usually a set of input constraints. */Planner.prototype.extractPlanFromConstraints = function (constraints) {  var sources = new OrderedCollection();  for (var i = 0; i < constraints.size(); i++) {    var c = constraints.at(i);    if (c.isInput() && c.isSatisfied())      // not in plan already and eligible for inclusion      sources.add(c);  }  return this.makePlan(sources);}/** * Recompute the walkabout strengths and stay flags of all variables * downstream of the given constraint and recompute the actual * values of all variables whose stay flag is true. If a cycle is * detected, remove the given constraint and answer * false. Otherwise, answer true. * Details: Cycles are detected when a marked variable is * encountered downstream of the given constraint. The sender is * assumed to have marked the inputs of the given constraint with * the given mark. Thus, encountering a marked node downstream of * the output constraint means that there is a path from the * constraint's output to one of its inputs. */Planner.prototype.addPropagate = function (c, mark) {  var todo = new OrderedCollection();  todo.add(c);  while (todo.size() > 0) {    var d = todo.removeFirst();    if (d.output().mark == mark) {      this.incrementalRemove(c);      return false;    }    d.recalculate();    this.addConstraintsConsumingTo(d.output(), todo);  }  return true;}/** * Update the walkabout strengths and stay flags of all variables * downstream of the given constraint. Answer a collection of * unsatisfied constraints sorted in order of decreasing strength. */Planner.prototype.removePropagateFrom = function (out) {  out.determinedBy = null;  out.walkStrength = Strength.WEAKEST;  out.stay = true;  var unsatisfied = new OrderedCollection();  var todo = new OrderedCollection();  todo.add(out);  while (todo.size() > 0) {    var v = todo.removeFirst();    for (var i = 0; i < v.constraints.size(); i++) {      var c = v.constraints.at(i);      if (!c.isSatisfied())        unsatisfied.add(c);    }    var determining = v.determinedBy;    for (var i = 0; i < v.constraints.size(); i++) {      var next = v.constraints.at(i);      if (next != determining && next.isSatisfied()) {        next.recalculate();        todo.add(next.output());      }    }  }  return unsatisfied;}Planner.prototype.addConstraintsConsumingTo = function (v, coll) {  var determining = v.determinedBy;  var cc = v.constraints;  for (var i = 0; i < cc.size(); i++) {    var c = cc.at(i);    if (c != determining && c.isSatisfied())      coll.add(c);  }}/* --- * * P l a n * --- *//** * A Plan is an ordered list of constraints to be executed in sequence * to resatisfy all currently satisfiable constraints in the face of * one or more changing inputs. */function Plan() {  this.v = new OrderedCollection();}Plan.prototype.addConstraint = function (c) {  this.v.add(c);}Plan.prototype.size = function () {  return this.v.size();}Plan.prototype.constraintAt = function (index) {  return this.v.at(index);}Plan.prototype.execute = function () {  for (var i = 0; i < this.size(); i++) {    var c = this.constraintAt(i);    c.execute();  }}/* --- * * M a i n * --- *//** * This is the standard DeltaBlue benchmark. A long chain of equality * constraints is constructed with a stay constraint on one end. An * edit constraint is then added to the opposite end and the time is * measured for adding and removing this constraint, and extracting * and executing a constraint satisfaction plan. There are two cases. * In case 1, the added constraint is stronger than the stay * constraint and values must propagate down the entire length of the * chain. In case 2, the added constraint is weaker than the stay * constraint so it cannot be accomodated. The cost in this case is, * of course, very low. Typical situations lie somewhere between these * two extremes. */function chainTest(n) {  planner = new Planner();  var prev = null, first = null, last = null;  // Build chain of n equality constraints  for (var i = 0; i <= n; i++) {    var name = "v" + i;    var v = new Variable(name);    if (prev != null)      new EqualityConstraint(prev, v, Strength.REQUIRED);    if (i == 0) first = v;    if (i == n) last = v;    prev = v;  }  new StayConstraint(last, Strength.STRONG_DEFAULT);  var edit = new EditConstraint(first, Strength.PREFERRED);  var edits = new OrderedCollection();  edits.add(edit);  var plan = planner.extractPlanFromConstraints(edits);  for (var i = 0; i < 100; i++) {    first.value = i;    plan.execute();    if (last.value != i)      alert("Chain test failed.");  }}/** * This test constructs a two sets of variables related to each * other by a simple linear transformation (scale and offset). The * time is measured to change a variable on either side of the * mapping and to change the scale and offset factors. */function projectionTest(n) {  planner = new Planner();  var scale = new Variable("scale", 10);  var offset = new Variable("offset", 1000);  var src = null, dst = null;  var dests = new OrderedCollection();  for (var i = 0; i < n; i++) {    src = new Variable("src" + i, i);    dst = new Variable("dst" + i, i);    dests.add(dst);    new StayConstraint(src, Strength.NORMAL);    new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED);  }  change(src, 17);  if (dst.value != 1170) alert("Projection 1 failed");  change(dst, 1050);  if (src.value != 5) alert("Projection 2 failed");  change(scale, 5);  for (var i = 0; i < n - 1; i++) {    if (dests.at(i).value != i * 5 + 1000)      alert("Projection 3 failed");  }  change(offset, 2000);  for (var i = 0; i < n - 1; i++) {    if (dests.at(i).value != i * 5 + 2000)      alert("Projection 4 failed");  }}function change(v, newValue) {  var edit = new EditConstraint(v, Strength.PREFERRED);  var edits = new OrderedCollection();  edits.add(edit);  var plan = planner.extractPlanFromConstraints(edits);  for (var i = 0; i < 10; i++) {    v.value = newValue;    plan.execute();  }  edit.destroyConstraint();}// Global variable holding the current planner.var planner = null;function deltaBlue() {  chainTest(100);  projectionTest(100);}for (var i = 0; i < 155; ++i)    deltaBlue();

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -