⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 unitbezier.h

📁 linux下开源浏览器WebKit的源码,市面上的很多商用浏览器都是移植自WebKit
💻 H
字号:
/* * Copyright (C) 2008 Apple Inc. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  */ #ifndef UnitBezier_h#define UnitBezier_h#include <math.h>namespace WebCore {    struct UnitBezier {        UnitBezier(double p1x, double p1y, double p2x, double p2y)        {            // Calculate the polynomial coefficients, implicit first and last control points are (0,0) and (1,1).            cx = 3.0 * p1x;            bx = 3.0 * (p2x - p1x) - cx;            ax = 1.0 - cx -bx;                         cy = 3.0 * p1y;            by = 3.0 * (p2y - p1y) - cy;            ay = 1.0 - cy - by;        }                double sampleCurveX(double t)        {            // `ax t^3 + bx t^2 + cx t' expanded using Horner's rule.            return ((ax * t + bx) * t + cx) * t;        }                double sampleCurveY(double t)        {            return ((ay * t + by) * t + cy) * t;        }                double sampleCurveDerivativeX(double t)        {            return (3.0 * ax * t + 2.0 * bx) * t + cx;        }                // Given an x value, find a parametric value it came from.        double solveCurveX(double x, double epsilon)        {            double t0;            double t1;            double t2;            double x2;            double d2;            int i;            // First try a few iterations of Newton's method -- normally very fast.            for (t2 = x, i = 0; i < 8; i++) {                x2 = sampleCurveX(t2) - x;                if (fabs (x2) < epsilon)                    return t2;                d2 = sampleCurveDerivativeX(t2);                if (fabs(d2) < 1e-6)                    break;                t2 = t2 - x2 / d2;            }            // Fall back to the bisection method for reliability.            t0 = 0.0;            t1 = 1.0;            t2 = x;            if (t2 < t0)                return t0;            if (t2 > t1)                return t1;            while (t0 < t1) {                x2 = sampleCurveX(t2);                if (fabs(x2 - x) < epsilon)                    return t2;                if (x > x2)                    t0 = t2;                else                    t1 = t2;                t2 = (t1 - t0) * .5 + t0;            }            // Failure.            return t2;        }        double solve(double x, double epsilon)        {            return sampleCurveY(solveCurveX(x, epsilon));        }            private:        double ax;        double bx;        double cx;                double ay;        double by;        double cy;    };}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -