⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nnview.cpp

📁 利用神经网络进行系统辨识和逆辨识的程序
💻 CPP
字号:
// NNView.cpp : implementation of the CNNView class
//

#include "stdafx.h"
#include "NN.h"

#include "NNDoc.h"
#include "NNView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

/////////////////////////////////////////////////////////////////////////////
// CNNView

IMPLEMENT_DYNCREATE(CNNView, CView)

BEGIN_MESSAGE_MAP(CNNView, CView)
	//{{AFX_MSG_MAP(CNNView)
	ON_COMMAND(ID_MODAL_BP, OnModalBp)
	ON_COMMAND(ID_MODAL_REVERSE, OnModalReverse)
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CNNView construction/destruction

CNNView::CNNView()
{
	// TODO: add construction code here

}

CNNView::~CNNView()
{
}

BOOL CNNView::PreCreateWindow(CREATESTRUCT& cs)
{
	// TODO: Modify the Window class or styles here by modifying
	//  the CREATESTRUCT cs

	return CView::PreCreateWindow(cs);
}

/////////////////////////////////////////////////////////////////////////////
// CNNView drawing

void CNNView::OnDraw(CDC* pDC)
{
	CNNDoc* pDoc = GetDocument();
	ASSERT_VALID(pDoc);
	// TODO: add draw code for native data here
	pDC->TextOut (10,10,"详细说明见word文档.............");
}

/////////////////////////////////////////////////////////////////////////////
// CNNView diagnostics

#ifdef _DEBUG
void CNNView::AssertValid() const
{
	CView::AssertValid();
}

void CNNView::Dump(CDumpContext& dc) const
{
	CView::Dump(dc);
}

CNNDoc* CNNView::GetDocument() // non-debug version is inline
{
	ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CNNDoc)));
	return (CNNDoc*)m_pDocument;
}
#endif //_DEBUG

/////////////////////////////////////////////////////////////////////////////
// CNNView message handlers
void CNNView::OnModalBp() ///////bp网络辨识
{	
	RECT rect;
	GetClientRect(&rect);
	CClientDC dc(this);
	dc.Rectangle(0,0,rect.right ,rect.bottom);  /////清除客户区
	////////定义变量//////////
	CPoint zero(20,300);               ////原点坐标 
    const int ni=5,nh1=20,nh2=10;     ////,no=1;///四层网络,各层节点数
	double w12[ni+1][nh1+1],w23[nh1+1][nh2+1],w34[nh2+1];  ////权值
 	double e2[nh1+1],e3[nh2+1],e4;        ///误差
	double xin[ni+1],h1[nh1+1],h2[nh2+1],yout;     ////网络各层输出
	const int s_number=800;             ////采样点个数        
	double u[s_number+1];              ////输入
	double y[s_number+1];             //////实际输出
    int i,j,k,n	,m;                      ///循环变量
	double alpha ;                  ///学习因子
	///...........
	const int train_times=10000;      /////训练次数
	const int train_number=100;      ////训练点数
	double e_all;                    ////误差平方和
	const double error_limit=0.0001;     /////误差限 mspe
	double mspe=1;
	CString str;
    double amax=2.0,amin=0.1,A=10.0;    /////自适应  计算alpha 用
	int kx=200;          /////放大倍数---画曲线用
	int yy;              /////输出坐标---画曲线用      
    /////////////.........
	dc.SelectStockObject (BLACK_PEN);
	dc.TextOut (10,2,"训练中......." );
	dc.TextOut (10,60,"绿色的曲线是网络输出......");
	dc.TextOut (10,40,"红色的曲线是对象输出....");
/////////////////////////////////////////////
//////////画对象输出///////////////////
	////坐标线
	dc.MoveTo (zero);            /////x坐标
	dc.LineTo (rect.right-50,zero.y);
	dc.MoveTo (zero.x ,rect.bottom -50);
	dc.LineTo (zero.x ,rect.top +100);
	dc.MoveTo (zero.x ,rect.top +100);              /////here
	dc.LineTo (zero.x-5 ,rect.top +110);
	dc.MoveTo (zero.x ,rect.top +100);
	dc.LineTo (zero.x+5 ,rect.top +110);
	dc.MoveTo (rect.right-50  ,zero.y );   ///y坐标
	dc.LineTo (rect.right-60  ,zero.y-5 ); 
	dc.MoveTo (rect.right-50  ,zero.y );  
	dc.LineTo (rect.right-60  ,zero.y+5 );
    ////参考线y  +0.5 ---  -0.5	
	dc.MoveTo (zero);
	dc.MoveTo (zero.x ,zero.y -0.5*kx);
	dc.LineTo (zero.x+10 ,zero.y -0.5*kx);
	dc.TextOut (30,zero.y-0.5*kx-22,"0.5");
	dc.MoveTo (zero.x ,zero.y +0.5*kx);
	dc.LineTo (zero.x+10,zero.y +0.5*kx);
	dc.TextOut (30,zero.y +0.5*kx-22,"-0.5");
	////参考线x
	dc.MoveTo (zero);
	for(i=0;i<=s_number-140;i+=20)
	{
		dc.MoveTo (zero.x+i,zero.y);
        dc.LineTo (zero.x+i,zero.y-10);
	}
	for(i=0;i<=s_number-100;i+=100)
	{
		str.Format ("%d",i);
	        dc.TextOut (zero.x+i-10,zero.y+2,str);
	}

	/////初始化输入  u[k]    
	for (i=1;i<=s_number;i++)
		 u[i]=sin(2*3.1415926535*i/250);
    /////计算实际输出  y[k]  
	y[3]=y[1]=y[2]=0;
    for(k=4;k<=s_number;k++)
		y[k]=(y[k-1]*y[k-2]*u[k-1]*(y[k-3]-1)+u[k-2])/(1+y[k-1]*y[k-1]+y[k-2]*y[k-2]);
   	/////划线
	CPen apen;                                ////////a new pen 
	apen.CreatePen(PS_SOLID,1,RGB(255,0,0));
	dc.SelectObject (apen);
	dc.MoveTo (zero);
	for (i=1;i<=s_number;i++)  //s_number=800;   //采样点个数
	{
        yy=zero.y -y[i]*kx;    // kx=200;  //放大倍数---画曲线用
		dc.LineTo (zero.x+i,yy);
		dc.MoveTo (zero.x+i,yy);
	};


//////////////////////////////////////
/// srand((unsigned)time(NULL));  
	/////初始化训练信号
//	int mm[16]={1,1,1,1,0,0,0,1,0,0,1,1,0,1,0};
	 for (i=1;i<=s_number;i++)                       
		u[i]=sin(2*3.1415926535*i/250);
		      //((double)rand()/(double)RAND_MAX)*2.0-1.0;
	          //mm[i-i/16]*0.01;
	         //(rand()/RAND_MAX)*0.2-0.1;
	/////计算训练输入的对象输出  
	y[3]=y[1]=y[2]=0;
    for(k=4;k<=s_number;k++)
	   y[k]=(y[k-1]*y[k-2]*u[k-1]*(y[k-3]-1)+u[k-2])/(1+y[k-1]*y[k-1]+y[k-2]*y[k-2]);
	
////////////////////////////////////////
///////////////////训练网络/////////////
    ///随机数 ---  权值赋初值
 	for(i=1;i<=ni;i++)
 	   for(j=1;j<=nh1;j++)
	   {   //// random   between  -0.1--+0.1
		w12[i][j]=rand();
	    w12[i][j]=w12[i][j]/RAND_MAX;
	    w12[i][j]=(2*w12[i][j]-1)*0.1; 
	   };
   for(i=0;i<=nh1;i++)
	for(j=0;j<=nh2;j++)
	{   //// random   between  -0.1--+0.1
		w23[i][j]=rand();
		w23[i][j]=w23[i][j]/RAND_MAX;
		w23[i][j]=(2*w23[i][j]-1)*0.1;
	};
    for(i=0;i<=nh2;i++)
	{   //// random   between  -0.1--+0.1
		w34[i]=rand();
		w34[i]=w34[i]/RAND_MAX;
		w34[i]=(2*w34[i]-1)*0.1;    
	};
	 
///////////////////////////////////////////////
    //////开始训练网络/////////
        	// train_times=10000;      /////训练次数
        	// train_number=100;       /////训练点数
	for (n=1;n<=train_times;n++)
	{
 		e_all=0;
		for(k=3+20;k<=train_number+20;k++)  ////  只取了300个点
		{	///构成输入向量
			xin[1]=y[k-1];
			xin[2]=y[k-2];
			xin[3]=y[k-3];
			xin[4]=u[k-1];
			xin[5]=u[k-2];  
			////////////////////
			h1[0]=0;h2[0]=0;
			for(i=1;i<=nh1;i++)        ////  隐层h1输出求得
			{	h1[i]=0.0;
				for(j=1;j<=ni;j++)
					h1[i]=h1[i]+xin[j]*w12[j][i];
			}
			for(i=1;i<=nh2;i++)        ////  隐层h2输出求得
			{	h2[i]=0.0;
				for(j=1;j<=nh1;j++)
					h2[i]=h2[i]+h1[j]*w23[j][i];
			}
			yout=0.0;           ////  输出层yout求得
			for(j=1;j<=nh2;j++)       
				 yout=yout+h2[j]*w34[j];
			///////////////////
			e_all+=(yout-y[k])*(yout-y[k]);  // 总误差!!!
			//////反向传播修正权值
			alpha=amax+(amin-amax)*exp(-A*mspe);                  
			/////////输出层权值  w34//////////////
			e4= (y[k]-yout)*yout*(1-yout); 
			for(j=1;j<=nh2;j++)
				w34[j]=w34[j]+alpha*e4*h2[j];
			////////////隐层权值     w23///////////////
			for(i=1;i<=nh2;i++)       /////计算误差e3
				e3[i]=e4*w34[i]*h2[i]*(1-h2[i]);
			for(j=1;j<=nh1;j++)       ////w23
				for(i=1;i<=nh2;i++)
					w23[j][i]=w23[j][i]+alpha*e3[i]*h1[j];
			//////////隐层权值     w12/////////////		
			for(i=1;i<=nh1;i++)       ////计算误差e2
			{	e2[i]=0;
				for(m=1;m<=nh2;m++)
					e2[i]=e2[i]+e3[m]*w23[i][m];
				e2[i]=e2[i]*h1[i]*(1-h1[i]);
			}                     
			for(j=1;j<=ni;j++)    //////w12
				for(i=1;i<=nh1;i++)
					w12[j][i]=w12[j][i]+alpha*e2[i]*xin[j];
		};  //////k个样本训练完毕  计算均方误差

		mspe=e_all/(train_number*2);
		if (mspe<error_limit)
		{  dc.TextOut (10,2,"达到误差要求......" );
		   str.Format (" %d %s %s  %d %s",train_number,"个样本","训练了",n,"次.....");
		   dc.TextOut (zero.y ,2,str );
		   break;	    /////exit for(n=1;n<=train_times;n++)
		}
	}
///////////////训练结束////////////////
    	if(n>=train_times)
		{   str.Format ("%s %d","达到训练次数...",train_times);
		    dc.TextOut (10,20 ,str);
		}
	    if (mspe>error_limit)
		  dc.TextOut (10,2,"误差未达到要求......" );
		str.Format ("%s%f","MSPE=",mspe);
		   dc.TextOut (zero.y,22,str);
/////////////////////////////////////////////
//////////////////////输出结果///////////////
	/////初始化输入  
	for (i=1;i<=s_number;i++)
		 u[i]=sin(2*3.1415926535*i/250);
    /////计算实际输出  
	y[3]=y[1]=y[2]=0;
    for(k=4;k<=s_number;k++)
		y[k]=(y[k-1]*y[k-2]*u[k-1]*(y[k-3]-1)+u[k-2])/(1+y[k-1]*y[k-1]+y[k-2]*y[k-2]);
    ///////////////
    CPen bpen;
    bpen.CreatePen(PS_SOLID,1,RGB(0,255,0));
	dc.SelectObject (bpen);    
	dc.MoveTo (zero);
    /////计算并画出网络输出///////////
	for(k=4;k<=s_number;k++) 
	{	///构成输入向量
		xin[1]=y[k-1];
		xin[2]=y[k-2];
		xin[3]=y[k-3];
		xin[4]=u[k-1];
		xin[5]=u[k-2];  
        ///////////////////
		for(i=1;i<=nh1;i++)        ////  隐层h1输出求得
		{	h1[i]=0;
            for(j=1;j<=ni;j++)
	            h1[i]=h1[i]+xin[j]*w12[j][i];
		};
		for(i=1;i<=nh2;i++)        ////  隐层h2输出求得
		{	h2[i]=0;
            for(j=1;j<=nh1;j++)
	            h2[i]=h2[i]+h1[j]*w23[j][i];
		};
		yout=0;           ////  输出层yout求得
		for(j=1;j<=nh2;j++)       
		     yout=yout+h2[j]*w34[j];
		////draw
	    yy=zero.y -yout*kx;
		dc.LineTo (zero.x+k,yy);
		dc.MoveTo (zero.x+k,yy);
	};
};

void CNNView::OnModalReverse()     //////逆模型1 非线性对象 单层网络
{
	RECT rect;
	GetClientRect(&rect);
	CClientDC dc(this);
	dc.Rectangle(0,0,rect.right ,rect.bottom);
	const int ni=6;                 ///输入层节点数
	const int sample_points=170;    ///采样点
	const int traintimes=10000;
	double u[sample_points+1];         
	double y[sample_points+1];       ////对象输入和输出
	double x[ni+1];                ///网络输入向量 
	double wi[ni+1];                ///输入权值向量
    double yout[sample_points+1];  ////网络输出
	double e=0,lin=0;
	double alpha=0.8;             ///步长
	int i,j,k;
	int kx=4,ky=100;                  ////作图的放大系数  
	CPoint zero(20,280);             ////原点
	double yy;
	CString str;
	dc.TextOut (10,10,"训练中..............");
	dc.TextOut (10,rect.bottom-60 ,"蓝色的曲线是输入......");
	dc.TextOut (10,rect.bottom -40,"红色的曲线是对象输出....");
	dc.TextOut (10,rect.bottom -20,"绿色的曲线是训练后的网络输出......");
//////////////////画坐标轴////////
	//坐标轴x
	dc.MoveTo (zero);
	dc.LineTo (rect.right ,zero.y );
	dc.MoveTo(rect.right-5 ,zero.y );
	dc.LineTo(rect.right-15 ,zero.y-5);
	dc.MoveTo(rect.right-5 ,zero.y );
	dc.LineTo(rect.right-15 ,zero.y+5);
	//坐标轴y
    dc.MoveTo(zero.x ,rect.bottom-60);
	dc.LineTo(zero.x ,rect.top + 50);
	dc.MoveTo (zero.x,rect.top + 50);
	dc.LineTo (zero.x-5,rect.top + 60);
	dc.MoveTo (zero.x,rect.top + 50);
	dc.LineTo (zero.x+5,rect.top + 60);
	 ////参考线y  	
	dc.MoveTo (zero);
	for(i=-4;i<=2;i++)
	{
		dc.MoveTo (zero.x,zero.y+i*ky*0.5);
        dc.LineTo (zero.x+10,zero.y+i*ky*0.5);   ///小短线
        str.Format ("%1.1f",-i*0.5);
	    dc.TextOut (zero.x+10,zero.y+i*ky*0.5-20,str); ///标记
	}
	/*
	dc.MoveTo (zero.x ,zero.y -0.5*kx);
	dc.LineTo (zero.x+10 ,zero.y -0.5*kx);
	dc.TextOut (30,zero.y-0.5*kx-22,"0.5");
	dc.MoveTo (zero.x ,zero.y +0.5*kx);
	dc.LineTo (zero.x+10,zero.y +0.5*kx);
	dc.TextOut (30,zero.y +0.5*kx-22,"-0.5");*/
	////参考线x
	dc.MoveTo (zero);
	for(i=0;i<=sample_points*kx;i+=20)
	{
		dc.MoveTo (zero.x+i*kx,zero.y);
        dc.LineTo (zero.x+i*kx,zero.y-10);
	}
	for(i=0;i<=sample_points;i+=10)
	{
		str.Format ("%d",i);
	        dc.TextOut (zero.x+i*kx-10,zero.y+2,str);
	}

    ////////初始化网络权值
	for(i=1;i<=ni;i++)  wi[i]=0.5;
    ////输入
    for(i=1;i<=sample_points;i++)
	{
		if (i<=20)
			u[i]=1.0;
		else if(i<=40)
			u[i]=(double)i/20;///1.0+(i-20)/20;
		else if(i<=60)
			u[i]=4.0-(double)i/20;//2.0-(i-40)/20;
		else
			u[i]=1.0+sin(0.1*i-6.1);
	}
	/////输入曲线
	dc.MoveTo (zero);
	CPen pen0;
	pen0.CreatePen (PS_SOLID,1,RGB(0,0,255));
	dc.SelectObject (pen0);
	for(k=1;k<=sample_points;k++)       
	{
	    yy=zero.y-u[k]*ky;
		dc.LineTo (k*kx+zero.x,yy);
		dc.MoveTo (k*kx+zero.x,yy);
	}
	////对象输出
	 ///for(i=1;i<=sample_points;i++)  u[i]=1.0;
	y[1]=0;
	for(i=2;i<=sample_points;i++)
		y[i]=(y[i-1]*exp(-y[i-1])+u[i-1])/(1.0+u[i-1]*exp(-y[i-1]));
	/////画对象输出曲线
	dc.MoveTo (zero);
	CPen pen1;
	pen1.CreatePen (PS_SOLID,1,RGB(255,0,0));   ////red
	dc.SelectObject (pen1);
	for(k=1;k<=sample_points;k++)       
	{
	    yy=zero.y -y[k]*ky;
		dc.LineTo (k*kx+zero.x,yy);
		dc.MoveTo (k*kx+zero.x,yy);
	}
///////训练网络
	double e_all;
for(i=1;i<=traintimes;i++)
{
	e_all=0.0;
	for(k=7;k<=sample_points;k++)
	{
		x[1]=y[k-1];
		x[2]=y[k-2];
		x[3]=y[k-3];
		x[4]=y[k-4];
		x[5]=y[k-5];
        x[6]=y[k-6];            ////构成输入向量
		yout[k]=0;
		for(j=1;j<=ni;j++)
			yout[k]+=wi[j]*x[j];
        e=y[k]-yout[k];
		e_all+=e*e;
	    lin=0.0;
		for(j=1;j<=ni;j++) lin+=x[j]*x[j];
		lin=alpha*e/lin;
		for (j=1;j<=ni;j++)       ////修正网络权值
			wi[j]+=lin*x[j];
	}
}
dc.TextOut (10,10,"训练结束........................");
//////////////训练结束   画网络输出
 /*  for(i=1;i<=sample_points;i++)
	{
		if (i<=20)
			u[i]=1.0;
		else if(i<=40)
			u[i]=(double)i/20;///1.0+(i-20)/20;
		else if(i<=60)
			u[i]=4.0-(double)i/20;//2.0-(i-40)/20;
		else
			u[i]=1.0+sin(0.1*i-6.1);
	}
	////对象输出
	y[1]=0;
	for(i=2;i<=sample_points;i++)
		y[i]=(y[i-1]*exp(-y[i-1])+u[i-1])/(1.0+u[i-1]*exp(-y[i-1]));
*/
  for(k=7;k<=sample_points;k++)
	{
		x[1]=y[k-1];
		x[2]=y[k-2];
		x[3]=y[k-3];
		x[4]=y[k-4];
		x[5]=y[k-5];
        x[6]=y[k-6];            ////构成输入向量
		yout[k]=0;
		for(i=1;i<=ni;i++)
			yout[k]+=wi[i]*x[i];
	}
	dc.MoveTo (zero);
	CPen pen2;
	pen2.CreatePen (PS_SOLID,1,RGB(0,255,0));
	dc.SelectObject (pen2);
	for(k=7;k<=sample_points;k++)       
	{
	    yy=zero.y-yout[k]*ky;
		dc.LineTo (k*kx+zero.x,yy);
		dc.MoveTo (k*kx+zero.x,yy);
	}



}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -