⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cook_float.h

📁 Fixptcook[1].tar.gz, 固点运算的rm格式音频编解码源代码
💻 H
字号:
/* * COOK compatible decoder, floating point implementation. * Copyright (c) 2003 Sascha Sommer * Copyright (c) 2005 Benjamin Larsson * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * *//** * @file cook_float.h * * Cook AKA RealAudio G2 floating point functions. *//** * Initialise floating point implementation: * lookup tables, mdct and associated window. * * @param q                     pointer to the COOKContext */static inline int init_cook_math(COOKContext *q){    int gain_size_factor = q->samples_per_channel/8;    int mlt_size = q->samples_per_channel;    int i;    float alpha;    /* Table of pow(2, [-63:63]) */    q->math.pow2tab[63] = 1.0;    for (i=1 ; i<64 ; i++){        q->math.pow2tab[63+i]=(float)((uint64_t)1<<i);        q->math.pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);    }    /* Table of pow(2, [-63..63]/2) */    q->math.rootpow2tab[63] = 1.0;    for (i=1 ; i<64 ; i++){        q->math.rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));        q->math.rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));    }    /* Table of pow(2, [-11..11]/(samples_per_channel/8)) */    for (i=0 ; i<23 ; i++) {        q->math.gain_table[i] = pow((double)q->math.pow2tab[i+52],                                    1.0/(double)gain_size_factor);    }    /* Initialize the MLT window: simple sine window. */    if ((q->math.mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)        return -1;    alpha = M_PI / (2.0 * (float)mlt_size);    for(i=0 ; i<mlt_size ; i++) {        q->math.mlt_window[i] =          sin((i + 0.5) * alpha) * sqrt(2.0 / q->samples_per_channel);    }    /* Initialize the MDCT. */    if (ff_mdct_init(&q->math.mdct_ctx, av_log2(mlt_size)+1, 1)) {        av_free(q->math.mlt_window);        return -1;    }    av_log(NULL,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",           av_log2(mlt_size)+1);    return 0;}/** * Free resources used by floating point implementation. * * @param q                     pointer to the COOKContext */static inline void free_cook_math(COOKContext *q){    /* Free allocated memory buffers. */    av_free(q->math.mlt_window);    /* Free the transform. */    ff_mdct_end(&q->math.mdct_ctx);}/** * The real requantization of the mltcoefs * * @param q                     pointer to the COOKContext * @param index                 index * @param quant_index           quantisation index * @param subband_coef_index    array of indexes to quant_centroid_tab * @param subband_coef_sign     signs of coefficients * @param mlt_p                 pointer into the mlt buffer */static void scalar_dequant_math(COOKContext *q, int index, int quant_index,                                int* subband_coef_index,                                int* subband_coef_sign, float* mlt_p){    int i;    float f1;    for(i=0 ; i<SUBBAND_SIZE ; i++) {        if (subband_coef_index[i]) {            f1 = quant_centroid_tab[index][subband_coef_index[i]];            if (subband_coef_sign[i]) f1 = -f1;        } else {            /* noise coding if subband_coef_index[i] == 0 */            f1 = dither_tab[index];            if (av_random(&q->random_state) < 0x80000000) f1 = -f1;        }        mlt_p[i] = f1 * q->math.rootpow2tab[quant_index+63];    }}/** * the actual requantization of the timedomain samples * * @param q                 pointer to the COOKContext * @param buffer            pointer to the timedomain buffer * @param gain_index        index for the block multiplier * @param gain_index_next   index for the next block multiplier */static inline void interpolate_math(COOKContext *q, float* buffer,                                    int gain_index, int gain_index_next){    int gain_size_factor = q->samples_per_channel/8;    int i;    float fc1, fc2;    fc1 = q->math.pow2tab[gain_index+63];    if(gain_index == gain_index_next){              //static gain        for(i=0 ; i<gain_size_factor ; i++){            buffer[i]*=fc1;        }    } else {                                        //smooth gain        fc2 = q->math.gain_table[11 + (gain_index_next-gain_index)];        for(i=0 ; i<gain_size_factor ; i++){            buffer[i]*=fc1;            fc1*=fc2;        }    }}/** * The modulated lapped transform, this takes transform coefficients * and transforms them into timedomain samples. * Applies transform window and overlaps buffers. * * @param q                 pointer to the COOKContext * @param inbuffer          pointer to the mltcoefficients * @param gain0             gain difference now/previous buffers * @param previous_buffer   pointer to the previous buffer to be used for overlapping */static void imlt_math(COOKContext *q, float *inbuffer,                      int gain0, float* previous_buffer){    const float fc = q->math.pow2tab[gain0 + 63];    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;    int i;    /* Inverse modified discrete cosine transform */    q->math.mdct_ctx.fft.imdct_calc(&q->math.mdct_ctx, q->mono_mdct_output,                                    inbuffer, q->math.mdct_tmp);    /* The weird thing here, is that the two halves of the time domain     * buffer are swapped. Also, the newest data, that we save away for     * next frame, has the wrong sign. Hence the subtraction below.     * Almost sounds like a complex conjugate/reverse data/FFT effect.     */    /* Apply window and overlap */    for(i = 0; i < q->samples_per_channel; i++){        buffer1[i] = buffer1[i] * fc * q->math.mlt_window[i] -          previous_buffer[i] * q->math.mlt_window[q->samples_per_channel - 1 - i];    }}/** * Decoupling calculation for joint stereo coefficients. * * @param x                 mono coefficient * @param table             number of decoupling table * @param i                 table index */static inline float cplscale_math(float x, int table, int i){  return x * cplscales[table-2][i];}/** * Final converion from floating point values to * signed, 16 bit sound samples. Round and clip. * * @param q                 pointer to the COOKContext * @param out               pointer to the output buffer * @param chan              0: left or single channel, 1: right channel */static inline void output_math(COOKContext *q, int16_t *out, int chan){    float *output = q->mono_mdct_output + q->samples_per_channel;    int j;    /* FIXME: Should use DSPContext.float_to_int16() here.     */    for (j = 0; j < q->samples_per_channel; j++) {        out[chan + q->nb_channels * j] =          av_clip(lrintf(output[j]), -32768, 32767);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -