📄 ruther_cross2.m
字号:
%ruther_cross2.m - program to do the scattering cross-section versus atomic
%number in Rutherford Scattering
clear; warning off;
m=1; %projectile mass in units of alpha particle mass
vb=0.01965; %velocity units (a_b/tau_b) (in inits of c=light speed)
ma=3730e6; %alpha particle mass energy in eV
Ene=5e6; %initial projectile energy in eV
v0=sqrt(2*Ene/m/ma)/vb; %initial speed in units of vb
b=20; %impact parameter
za=2; %za=projectile(2->alpha)
ztmin=13; ztmax=79; %from Aluminum to Gold
j=0; %initial counter
for iz=ztmin:2:ztmax
j=j+1;
zt(j)=iz; %target array
K=za*zt(j); %dimensionless force constant
ye=-sign(K)*sqrt(1+m^2*v0^4*b^2/K^2);% eccentricity
% can find min.max angle limits for the assymptotes of r for this ye
% these occur at the zeros of the denominator of the r(theta) equation
%thmin=fzero(inline('ye*cos(x)+1'),[-pi/2,0],[],ye)+1.e-5;
%thmax=fzero(inline('ye*cos(x)+1'),[0,pi/2],[],ye)-1.e-5;
%th(j)=thmax-thmin; %angle from +x axis
%thsc(j)=pi-th(j); %total scattering angle produced by target species
%best is to find alpha angle assymptote - faster way, done only once
alpha=fzero(inline('ye*cos(x)+1'),[0,pi/2],[],ye)-1.e-5;
thsc(j)=pi-2*alpha; %total scattering angle produced by target species
%Scatt. Cross-Section
sigma(j)=K^2*2*pi*sin(thsc(j))/sin(thsc(j)/2)^4/4/m^2/v0^4;
end
str=cat(2,'E_k= ',num2str(Ene,3),' eV',', b= ',num2str(b,3),' a_b');
subplot(2,2,1)
plot(zt(:),thsc(:),'k.','MarkerSize',5)
xlabel('Z_t','FontSize',14),ylabel('\Theta (Radians)','FontSize',14)
title('\alpha Particle Scattering for various Targets','FontSize',12)
subplot(2,2,2)
plot(zt(:),sigma(:),'b.','MarkerSize',5)
xlabel('Z_t','FontSize',14),ylabel('\sigma(\Theta) (a_b^2)','FontSize',14)
title(str,'FontSize',12)
subplot(2,2,3)
plot(thsc(:),sigma(:),'r.','MarkerSize',5)
xlabel('\Theta (Radians)','FontSize',14)
ylabel('\sigma(\Theta) (a_b^2)','FontSize',14)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -