⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 chp7ex4.m

📁 Those who are working on power system optimisatio, for them here is all the load flow programs from
💻 M
字号:
% Iterative solution Using Newton method
alpha =[500; 400; 200];
beta = [5.3; 5.5; 5.8]; gama=[.004; .006; .009];
PD=800;
DelP = 10;              % Error in DelP is set to a high value
lambda = input('Enter estimated value of Lambda = ');
fprintf('\n ')
disp(['   Lambda      P1       P2        P3        DP'...
      '     grad      Delambda'])
iter = 0;                                  % Iteration counter
while abs(DelP)  >= 0.001               % Test for convergence
iter = iter + 1;                           % No. of iterations
P = (lambda - beta)./(2*gama);
DelP =PD - sum(P);                                  % Residual
J = sum( ones(length(gama), 1)./(2*gama));      % Gradient sum
Delambda = DelP/J;                        % Change in variable
disp([lambda, P(1), P(2), P(3), DelP, J, Delambda])
lambda = lambda + Delambda;              % Successive solution
end
totalcost = sum(alpha + beta.*P + gama.*P.^2)
%Graphical Demonstration of Example 7.4
axis([0 450  6.5 10.5]);
P1=250:10:450; P2 = 150:10:350; P3=100:10:250;
IC1= 5.3 + 0.008*P1;
IC2= 5.5 + 0.012*P2;
IC3= 5.8 + 0.018*P3;
Px = 0:100:400;
plot(P1, IC1, P2, IC2, P3, IC3, Px, lambda*ones(1, length(Px)),'-m'),
xlabel('P, MW'), ylabel(' $/MWh'), grid

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -