📄 crlb_1.m
字号:
function X = CRLB( BSN, MSP, R, Noise )
% Cramer-Rao Lower Bound 是无偏估计的理论下界
% CRML参数说明:
% BSN: 基站的个数;
% MS: 移动台的位置,其中MSx/MSy均在[0,1];
% R: 小区半径。
%
% X: CRLB是一矩阵的形式,主对角线上第一个元素表示横坐标的CRLB;
% 第二个元素表示定位精度的CRLB。
% See also CRLB.m
% 李金伦,西南交通大学
% 10 December, 2004, 第一版
% 参数检查:
if nargout>1,
error('Too many output arguments.');
end
if nargin ~= 4,
error('Wrong number of input arguments.');
end
% if BSN <= 3,
% error('The number of BSs must be larger than 3 for this program.');
% end
flag = size(MSP);
if flag(1)~=1 | flag(2)~=2,
error('Wrong position vector!');
end
% 初始参数设置:
BS = NetworkTop(BSN);
c = 3*10^8;
Dev = Noise^2/c^2;
Q = 0.5*Dev*(eye(BSN-1) + ones(BSN-1));
% Q = eye(BSN-1);
%Q = Dev*eye(BSN-1);
% 算法流程:
MS = R*MSP;
% MS与BS之间的真实距离
for i = 1: BSN,
BSR(i) = sqrt((BS(1, i) - MS(1))^2 + (BS(2, i ) - MS(2))^2);
end
%Gt
for i = 1: BSN-1,
Gt(i, 1) = (BS(1, 1) - MS(1))/BSR(1) - (BS(1, i+1) - MS(1))/BSR(i+1);
Gt(i, 2) = (BS(2, 1) - MS(2))/BSR(1) - (BS(2, i+1) - MS(2))/BSR(i+1);
end
mCRLB = c^2*inv(Gt'*inv(Q)*Gt);
Crlb = sqrt(mCRLB(1,1) + mCRLB(2,2));
% BSR_1 = sqrt(MS(1)^2 + MS(2)^2); % R(1)
%
% % R(2) --- R(BSN)
% for i = 1: BSN-1,
% BSR(i) = sqrt((BS(1, i+1) - MS(1))^2 + (BS(2, i+1) - MS(2))^2);
% end
% % Ga0
% for i = 1:BSN -1,
% Ga(i,1) = -BS(1, i+1);
% Ga(i,2) = -BS(2, i+1);
% Ga(i,3) = -BSR(i);
% end
% % Ga'
% mGa = [1, 0; 0, 1; 1, 1];
% % B
% B = zeros(BSN-1, BSN-1);
% for i = 1: BSN-1,
% B(i, i) = BSR(i);
% end
% % B'
% mB = [MS(1), 0, 0; 0, MS(2), 0; 0, 0, BSR_1];
% % B''
% mmB = [MS(1), 0; 0, MS(2);];
%
% % 输出
% mCrlb = c*c*inv(mmB*mGa'*inv(mB)*Ga'*inv(B)*inv(Q)*inv(B)*Ga*inv(mB)*mGa*mmB);
% Crlb = sqrt(mCrlb(1,1) + mCrlb(2,2));
if nargout == 1,
X = Crlb;
elseif nargout == 0,
disp( Crlb );
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -