📄 test_tdoa.m
字号:
% 本程序实现测试、比较无线定位算法
% TESTALGORITHM
% 参数说明:
% 移动台初始位置由MSPosition给出
% 输出移动台的估计位置。
% 比较各个算法的RMSE、CRLB、GDOP
% 比较各个算法的时间复杂度。
% Designed by 李金伦, SWJTU, 2005.10.4
BSN = [7,6,5,4];
% BSN = [7];
%BSN = 3;
R = 3000;
CalNum = 10000;
%Noise = [50^2,100^2,150^2,200^2,300^2,400^2,500^2,700^2,1000^2];
%Noise = 30^2;
%Noise = [40^2,80^2,90^2,120^2,150^2,200^2,500^2,700^2,1000^2];
% 刘老师提出方法中,几种算法的比较
% for m = 1:4,
% for n = 1:7,
% for i = 1: 1000,
% MSP = MSPosition();
% MS(i ,1) = MSP(1)*R;
% MS(i, 2) = MSP(2)*R;
%
% EMSMI = EvLChanAlgorithm(BSN(m),MSP,R,Noise(n));
% EMSM(i ,1) = EMSMI(1);
% EMSM(i, 2) = EMSMI(2);
%
% EMSvCI = EvChanAlgorithm(BSN(m),MSP,R,Noise(n));
% EMSvC(i ,1) = EMSvCI(1);
% EMSvC(i, 2) = EMSvCI(2);
%
% EMSCI = ChanAlgorithm(BSN(m),MSP,R,Noise(n));
% EMSC(i ,1) = EMSCI(1);
% EMSC(i, 2) = EMSCI(2);
%
% EMSTI = TaylorAlgorithm(BSN(m),MSP,R,Noise(n));
% EMST(i ,1) = EMSTI(1);
% EMST(i, 2) = EMSTI(2);
%
% EMSvLCI = EvTaylorAlgorithm(BSN(m),MSP,R,Noise(n));
% EMSvLC(i ,1) = EMSvLCI(1);
% EMSvLC(i, 2) = EMSvLCI(2);
% end
%
% rmse_vc(m,n) = TDOA_RMSE(MS,EMSvC);
% rmse_vt(m,n) = TDOA_RMSE(MS,EMSvLC);
% rmse_c(m,n) = TDOA_RMSE(MS,EMSC);
% rmse_m(m,n) = TDOA_RMSE(MS,EMSM);
% rmse_t(m,n) = TDOA_RMSE(MS,EMST);
% end
% end
%几种传统定位算法的比较
% Noise = [30^2,60^2,90^2,120^2,150^2,180^2];
% Noise = [30];
Noise = [30, 60, 90, 150, 210, 300];
for m = 1:4,
for n = 1:6,
for i = 1: CalNum,
MSP = MSPosition();
MS(i,1) = MSP(1)*R;
MS(i,2) = MSP(2)*R;
EMSCI = ChanAlgorithm(BSN(m), MSP, R, Noise(n));
EMSC(i, 1) = EMSCI(1);
EMSC(i, 2) = EMSCI(2);
EMSTI = TaylorAlgorithm(BSN(m), MSP, R, Noise(n));
EMST(i ,1) = EMSTI(1);
EMST(i, 2) = EMSTI(2);
EMSSII = SIAlgorithm(BSN(m), MSP, R, Noise(n));
EMSSI(i ,1) = EMSSII(1);
EMSSI(i, 2) = EMSSII(2);
% EMSSXI = SXAlgorithm(BSN(m), MSP, R, Noise(n));
% EMSSX(i ,1) = EMSSXI(1);
% EMSSX(i, 2) = EMSSXI(2);
end
rmse_c(m,n) = TDOA_RMSE(MS,EMSC);
rmse_t(m,n) = TDOA_RMSE(MS,EMST);
rmse_si(m,n) = TDOA_RMSE(MS,EMSSI);
crlb(m,n) = CRLB(BSN(m), MSP, R, Noise(n));
% rmse_sx(m,n) = TDOA_RMSE(MS,EMSSX);
end
end
% % % 三种方法的比较:
% Noise = [30^2,60^2,120^2,240^2,210^2,600^2,1200^2,2400^2];
% for m = 1,
% for n = 1:8,
% for i = 1: 10000,
% MSP = MSPosition();
% MS(i ,1) = MSP(1)*R;
% MS(i, 2) = MSP(2)*R;
%
% EMSvCI = EvChanAlgorithm(BSN(m),MSP,R,Noise(n));
% EMSvC(i ,1) = EMSvCI(1);
% EMSvC(i, 2) = EMSvCI(2);
%
% EMSCI = ChanAlgorithm(BSN(m),MSP,R,Noise(n));
% EMSC(i ,1) = EMSCI(1);
% EMSC(i, 2) = EMSCI(2);
%
% EMSvLCI = EvTaylorAlgorithm(BSN(m),MSP,R,Noise(n));
% EMSvLC(i ,1) = EMSvLCI(1);
% EMSvLC(i, 2) = EMSvLCI(2);
%
% EMSTI = TaylorAlgorithm(BSN(m), MSP, R, Noise(n));
% EMST(i ,1) = EMSTI(1);
% EMST(i, 2) = EMSTI(2);
% end
%
% rmse_vc(m,n) = TDOA_RMSE(MS,EMSvC);
% rmse_c(m,n) = TDOA_RMSE(MS,EMSC);
% rmse_vl(m,n) = TDOA_RMSE(MS,EMSvLC);
% rmse_t(m,n) = TDOA_RMSE(MS,EMST);
% end
% end
% % CHAN算法、Fang算法以及CRLB的比较
% for n = 1:5,
% for i = 1: 10000,
% MSP = MSPosition();
% MS(i, 1) = R*MSP(1);
% MS(i, 2) = R*MSP(2);
%
% EMS_Chan3i = Chan_3BS(MSP,R,Noise(n));
% EMS_Chan3(i ,1) = EMS_Chan3i(1);
% EMS_Chan3(i, 2) = EMS_Chan3i(2);
%
% EMS_Fangi = FangAlgorithm(MSP,R,Noise(n));
% EMS_Fang(i ,1) = EMS_Fangi(1);
% EMS_Fang(i, 2) = EMS_Fangi(2);
% end
%
% rmse_c(n) = TDOA_RMSE(MS, EMS_Chan3);
% rmse_f(n) = TDOA_RMSE(MS, EMS_Fang);
% % crlb(n) = CRLB(BSN, MSP, R, Noise(n))
% end
% % Chan算法性能分析
% Noise = [60^2,90^2,120^2,150^2,180^2,210^2,600^2];
% for m = 1:1,
% for n = 1:7,
% for i = 1: 1000,
% MSP = MSPosition();
% MS(i,1) = MSP(1)*R;
% MS(i,2) = MSP(2)*R;
%
% EMSCI = ChanAlgorithm(BSN(m), MSP, R, Noise(n));
% EMSC(i, 1) = EMSCI(1);
% EMSC(i, 2) = EMSCI(2);
%
% EMSTI = TaylorAlgorithm(BSN(m), MSP, R, Noise(n));
% EMST(i ,1) = EMSTI(1);
% EMST(i, 2) = EMSTI(2);
%
% end
%
% rmse_c(m,n) = TDOA_RMSE(MS,EMSC);
% rmse_t(m,n) = TDOA_RMSE(MS,EMST);
% end
% end
% % Taylor算法分析:
% Noise = [30^2,60^2,90^2,120^2,150^2,180^2,210^2];
% for m = 1:1,
% for n = 1:7,
% for i = 1: 10000,
% MSP = MSPosition();
% MS(i,1) = MSP(1)*R;
% MS(i,2) = MSP(2)*R;
%
% EMSTI_1 = TaylorAlgorithm(BSN(m), MSP, R, Noise(n));
% EMST_1(i ,1) = EMSTI_1(1);
% EMST_1(i, 2) = EMSTI_1(2);
%
% MSP_1 = MSP + [0.05 0.05];
% EMSTI_2 = TaylorAlgorithm(BSN(m),MSP_1, R, Noise(n));
% EMST_2(i ,1) = EMSTI_2(1);
% EMST_2(i, 2) = EMSTI_2(2);
%
% MSP_2 = [sqrt(3)/4, sqrt(3)*tand(15)/4];
% EMSTI_3 = TaylorAlgorithm(BSN(m),MSP_2, R, Noise(n));
% EMST_3(i ,1) = EMSTI_3(1);
% EMST_3(i, 2) = EMSTI_3(2);
%
% MSP_3 = MSP + [0.01 0.01];
% EMSTI_4 = TaylorAlgorithm(BSN(m),MSP_3, R, Noise(n));
% EMST_4(i ,1) = EMSTI_4(1);
% EMST_4(i, 2) = EMSTI_4(2);
% end
%
% rmse_t1(m,n) = TDOA_RMSE(MS,EMST_1);
% rmse_t2(m,n) = TDOA_RMSE(MS,EMST_2);
% rmse_t3(m,n) = TDOA_RMSE(MS,EMST_3);
% rmse_t4(m,n) = TDOA_RMSE(MS,EMST_4);
% end
% end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -