📄 svm-predict.c
字号:
#include <stdio.h>#include <ctype.h>#include <stdlib.h>#include <string.h>#include <errno.h>#include "svm.h"struct svm_node *x;int max_nr_attr = 64;struct svm_model* model;int predict_probability=0;static char *line = NULL;static int max_line_len;static char* readline(FILE *input){ int len; if(fgets(line,max_line_len,input) == NULL) return NULL; while(strrchr(line,'\n') == NULL) { max_line_len *= 2; line = (char *) realloc(line,max_line_len); len = (int) strlen(line); if(fgets(line+len,max_line_len-len,input) == NULL) break; } return line;}void exit_input_error(int line_num){ fprintf(stderr,"Wrong input format at line %d\n", line_num); exit(1);}void predict(FILE *input, FILE *output){ int correct = 0; int total = 0; double error = 0; double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0; int svm_type=svm_get_svm_type(model); int nr_class=svm_get_nr_class(model); double *prob_estimates=NULL; int j; if(predict_probability) { if (svm_type==NU_SVR || svm_type==EPSILON_SVR) printf("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model)); else { int *labels=(int *) malloc(nr_class*sizeof(int)); svm_get_labels(model,labels); prob_estimates = (double *) malloc(nr_class*sizeof(double)); fprintf(output,"labels"); for(j=0;j<nr_class;j++) fprintf(output," %d",labels[j]); fprintf(output,"\n"); free(labels); } } max_line_len = 1024; line = (char *)malloc(max_line_len*sizeof(char)); while(readline(input) != NULL) { int i = 0; double target_label, predict_label; char *idx, *val, *label, *endptr; int inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0 label = strtok(line," \t"); target_label = strtod(label,&endptr); if(endptr == label) exit_input_error(total+1); while(1) { if(i>=max_nr_attr-1) // need one more for index = -1 { max_nr_attr *= 2; x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node)); } idx = strtok(NULL,":"); val = strtok(NULL," \t"); if(val == NULL) break; errno = 0; x[i].index = (int) strtol(idx,&endptr,10); if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index) exit_input_error(total+1); else inst_max_index = x[i].index; errno = 0; x[i].value = strtod(val,&endptr); if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr))) exit_input_error(total+1); ++i; } x[i].index = -1; if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC)) { predict_label = svm_predict_probability(model,x,prob_estimates); fprintf(output,"%g",predict_label); for(j=0;j<nr_class;j++) fprintf(output," %g",prob_estimates[j]); fprintf(output,"\n"); } else { predict_label = svm_predict(model,x); fprintf(output,"%g\n",predict_label); } if(predict_label == target_label) ++correct; error += (predict_label-target_label)*(predict_label-target_label); sump += predict_label; sumt += target_label; sumpp += predict_label*predict_label; sumtt += target_label*target_label; sumpt += predict_label*target_label; ++total; } if (svm_type==NU_SVR || svm_type==EPSILON_SVR) { printf("Mean squared error = %g (regression)\n",error/total); printf("Squared correlation coefficient = %g (regression)\n", ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/ ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt)) ); } else printf("Accuracy = %g%% (%d/%d) (classification)\n", (double)correct/total*100,correct,total); if(predict_probability) free(prob_estimates);}void exit_with_help(){ printf( "Usage: svm-predict [options] test_file model_file output_file\n" "options:\n" "-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supported\n" ); exit(1);}int main(int argc, char **argv){ FILE *input, *output; int i; // parse options for(i=1;i<argc;i++) { if(argv[i][0] != '-') break; ++i; switch(argv[i-1][1]) { case 'b': predict_probability = atoi(argv[i]); break; default: fprintf(stderr,"Unknown option: -%c\n", argv[i-1][1]); exit_with_help(); } } if(i>=argc-2) exit_with_help(); input = fopen(argv[i],"r"); if(input == NULL) { fprintf(stderr,"can't open input file %s\n",argv[i]); exit(1); } output = fopen(argv[i+2],"w"); if(output == NULL) { fprintf(stderr,"can't open output file %s\n",argv[i+2]); exit(1); } if((model=svm_load_model(argv[i+1]))==0) { fprintf(stderr,"can't open model file %s\n",argv[i+1]); exit(1); } x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct svm_node)); if(predict_probability) { if(svm_check_probability_model(model)==0) { fprintf(stderr,"Model does not support probabiliy estimates\n"); exit(1); } } else { if(svm_check_probability_model(model)!=0) printf("Model supports probability estimates, but disabled in prediction.\n"); } predict(input,output); svm_destroy_model(model); free(x); free(line); fclose(input); fclose(output); return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -