⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 index.html

📁 不完全数据分析MATLAB程序(部分信息重建):最小均方估计、协方差矩阵、缺失值推测
💻 HTML
字号:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"><html>  <head>    <meta http-equiv="Content-Type" content=    "text/html; charset=iso-8859-1">    <meta name="KEYWORDS" lang="en-us" content=    "missing values, incomplete data, EM algorithm, regularization,    ridge regression, historic surface temperatures, climate data">    <meta name="DESCRIPTION" content="regularized EM algorithm">    <title>Analysis of incomplete datasets: Estimation of mean    values and covariance matrices and imputation of missing values</title>    <style>      body{        background-color: #FFFFFF;	        color: #333333;      }        p.ref{  /* for bibliography */        margin-left: 4em;        text-indent: -2.5em      }       code{        font-family: monospace;      }      p.code{        margin-left: 2.5em;	text-align: left;	font-family: monospace;      }      div.cent{        text-align: center      }      h1{        text-align: center;       }           h2{	        text-align: left;        margin-top: 2.5ex      }      a:link    {color: #006699; text-decoration: none}      a:active  {color: #999933; text-decoration: none}      a:visited {color: #006699; text-decoration: none}    </style>  </head>  <body>  <table border="0" cellspacing="0" cellpadding="0" width=550 align="center">  <tr><td>    <h1 class="cent">Analysis of incomplete datasets: Estimation    of mean values and covariance matrices and imputation of missing    values<br></h1>      <div class="cent"><font size="-1">     [<a href="#purpose">Purpose</a>]     &nbsp;&nbsp;     [<a href="#installation">Installation</a>]     &nbsp;&nbsp;     [<a href="#files">Module&nbsp;descriptions</a>]    &nbsp;&nbsp;     [<a href="#suggestions">Possible&nbsp;modifications</a>]    </font></div>    <h2><font size="+1"><a name="purpose">Purpose</a></font></h2>    <p>What follows is a collection of <a href="http://www.mathworks.com/">    Matlab</a> modules for</p>    <ul>      <li>the estimation of mean values and covariance matrices from      incomplete datasets, and </li>      <li>the imputation of missing values in incomplete datasets.</li>    </ul>    <p>The modules implement the regularized EM algorithm described in</p>    <p class="ref">T. Schneider, 2001: <a href=     "../papers/imputation.pdf">Analysis of incomplete climate data:    Estimation of mean values and covariance matrices and imputation    of missing values</a>. <cite>Journal of Climate</cite>,    <strong>14</strong>, 853&#150;871.</p>     <p>The EM algorithm for Gaussian data is based on iterated linear    regression analyses. In the regularized EM algorithm, a    regularized regression method replaces the conditional maximum    likelihood estimation of regression parameters in the conventional    EM algorithm for Gaussian data. The modules here provide truncated    total least squares (with fixed truncation parameter) and ridge    regression with generalized cross-validation as regularized    regression methods.</p>        <p>The implementation of the regularized EM algorithm is modular,    so that the modules that perform the regularized regression (e.g.,    ridge regression and generalized cross-validation) can be    exchanged for other regularization methods and other methods of    determining a regularization parameter. Per-Christian Hansen's <a    href="http://www.imm.dtu.dk/~pch/Regutools/regutools.html">Regularization    Tools</a> contain Matlab modules implementing a collection of    regularization methods that can be adapted to fit into the    framework of the EM algorithm. The generalized cross-validation    modules of the regularized EM algorithm are adapted from Hansen's    generalized cross-validation modules.</p>    <p>In the Matlab implementation of the regularized EM algorithm,    more emphasis was placed on the modularity of the program code    than on computational efficiency. Below are some <a    href="#suggestions">suggestions</a> on how the regularized EM    algorithm could be implemented more efficiently.</p>    <h2><font size="+1"><a name="installation">Installation</a></font></h2>    <p>The program package consists of several Matlab modules. To    install the programs, copy the package (available as a <a href=    "imputation.tar.gz">tar.gz-file</a>) into a directory that is    accessible by Matlab. Unpack the package using</p> <p    class="code"> gunzip imputation.tar.gz<br> tar -xvf imputation.tar    </p>    <p>Starting Matlab and invoking Matlab's online help function</p>    <p class="code"> help <i>filename</i>    </p>    <p>displays information on the module <code><i>filename</i>.m</code>.</p>    <h2><font size="+1"><a name="files">Module descriptions</a></font></h2>    <dl>      <dt><a href="CHANGES">CHANGES</a></dt>      <dd>Recent significant changes of the programs.</dd>      <dt><a href="center.m">center.m</a></dt>      <dd>Centers data by subtracting the mean.</dd>      <dt><a href="gcvfctn.m">gcvfctn.m</a>&nbsp;&nbsp;&nbsp;(auxiliary           module to gcvridge.m)</dt>      <dd>Evaluates generalized cross-validation function.</dd>      <dt><a href="gcvridge.m">gcvridge.m</a></dt>       <dd>Finds minimum of generalized cross-validation function for      ridge regression.</dd>      <dt><a href="iridge.m">iridge.m</a></dt>      <dd>Computes regression parameters by individual ridge regressions.</dd>      <dt><a href="mridge.m">mridge.m</a></dt>      <dd>Computes regression parameters by a multiple ridge regression.</dd>      <dt><a href="nancov.m">nancov.m</a></dt>      <dd>Sample covariance matrix of available values in      incomplete dataset.</dd>       <dt><a href="nanmean.m">nanmean.m</a></dt>      <dd>Sample mean of available values in incomplete dataset.</dd>       <dt><a href="nanstd.m">nanstd.m</a></dt>      <dd>Standard deviation of available values in      incomplete dataset.</dd>       <dt><a href="nansum.m">nansum.m</a></dt>      <dd>Sum over available values in incomplete dataset.</dd>       <dt><a href="peigs.m">peigs.m</a></dt>      <dd>Computes positive eigenvalues and corresponding      eigenvectors.</dd>       <dt><a href="pttls.m">pttls.m</a></dt>      <dd>Computes regression parameters by truncated total least squares.</dd>       <dt><a href="regem.m">regem.m</a></dt>      <dd>Driver module for regularized EM algorithm.</dd>      <dt><a href="standardize.m">standardize.m</a></dt>      <dd>Standardizes data by subtracting the mean and scaling      with the standard deviation.</dd>    </dl>    <h2><font size="+1"><a name="suggestions">Possible modifications</a></font></h2>    <p>More efficient implementations of the regularized EM algorithm    are possible. For example, if the missing values in the dataset    under consideration follow regular patterns, the algorithm might    exploit the special structure of the dataset. Other possible    modifications include the extensions mentioned in the <a    href="../papers/imputation.pdf">above paper</a>:</p>    <ul>      <li>One could implement a regularized EM algorithm that exploits      spatio-temporal covariability (cf. Section&nbsp;4 of the <a      href="../papers/imputation.pdf">above paper</a>).</li>      <li>One could implement an adaptive method for the choice of      truncation parameter if truncated total least squares (TTLS) is      used as the regularized regression method in the regularized EM      algorithm. Some criteria for the choice of truncation parameter      in TTLS are discussed in Sima and van Huffel (2007), Level      choice in truncated total least squares, <em>Comp. Stat. Data      Anal.</em> (to appear). These methods require one additional      eigendecomposition per record, in addition to the one      eigendecomposition per iteration of the total covariance matrix      required if TTLS is used.        <li>One could find matching patterns of missing values in      different records and compute a regression for each pattern of      missing values instead of for each record.</li>      <li>One could parallelize the algorithm, so that the      computations for several records (or for several patterns of      missing values) are carried out simultaneously.</li>      <li>One could compute only one eigendecomposition per iteration,      instead of one eigendecomposition per record (or per pattern of      missing values), and compute the ridge regression via a singular      value decomposition of a data matrix (cf. Section&nbsp;3 of the      <a href="../papers/imputation.pdf">above paper</a>). For      datasets with many more variables than records, this procedure      might be faster than computing one eigendecomposition per record      and iteration.</li>    </ul>    </td></tr>    </table>  </body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -