📄 simacceleration.m
字号:
%% Author: epokh
%% Website: www.epokh.org/drupy
%% This software is under GPL
global A;
global B;
global C;
global D;
global theta0;
%%This simulation implement the acceleration in the model
%% an ode solver is used to solve the differential equation
close all
%% vl,vr expressed in meters/seconds
%%the left wheel velocity
vl=0.02;
%%the right wheel velocity
vr=0.02;
%% the acceleration time
ar=0.6;
al=0.5;
%%the initial orientation of the robot
%%the angle is counter clockwise from the x axis
theta0=0;
%%b is the axis length of the robot that connect the 2 wheels expressed in
%%meters
b=0.5;
%%the simulation time
tstart=0;
tend=5;
timestep=0.01;
%%now define the number of time steps
nsteps=(tend-tstart)/timestep;
%%this is the starting position for the robot
start_pos=[0,0,theta0];
position_pts=[start_pos];
old_pos=[start_pos];
lwheel_trace=LeftWheelLoc(start_pos,b);
rwheel_trace=RightWheelLoc(start_pos,b);
figure(1);
title(['Odometry simulation using acceleration...','ar =',num2str(ar),'al =',num2str(al)]);
xlabel('X coordinate');
ylabel('Y coordinate');
DrawRobotPosition(old_pos,b);
for t=tstart+timestep:timestep:tend
new_pos=deadReckonAcceleration(ar,al,vr,vl,t,b);
position_pts=[position_pts; new_pos];
lwheel_trace=[lwheel_trace; LeftWheelLoc(new_pos,b)];
rwheel_trace=[rwheel_trace; RightWheelLoc(new_pos,b)];
old_pos=new_pos;
DrawRobotPosition(old_pos,b);
end;
hold on;
DrawWheelTrace(lwheel_trace,'g');
DrawWheelTrace(rwheel_trace,'b');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -