⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_tan.c

📁 glibc 2.9,最新版的C语言库函数
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//*********************************************************************//*  MODULE_NAME: utan.c                                              *//*                                                                   *//*  FUNCTIONS: utan                                                  *//*             tanMp                                                 *//*                                                                   *//*  FILES NEEDED:dla.h endian.h mpa.h mydefs.h utan.h                *//*               branred.c sincos32.c mptan.c                        *//*               utan.tbl                                            *//*                                                                   *//* An ultimate tan routine. Given an IEEE double machine number x    *//* it computes the correctly rounded (to nearest) value of tan(x).   *//* Assumption: Machine arithmetic operations are performed in        *//* round to nearest mode of IEEE 754 standard.                       *//*                                                                   *//*********************************************************************/#include "endian.h"#include "dla.h"#include "mpa.h"#include "MathLib.h"#include "math.h"static double tanMp(double);void __mptan(double, mp_no *, int);double tan(double x) {#include "utan.h"#include "utan.tbl"  int ux,i,n;  double a,da,a2,b,db,c,dc,c1,cc1,c2,cc2,c3,cc3,fi,ffi,gi,pz,s,sy,  t,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,w,x2,xn,xx2,y,ya,yya,z0,z,zz,z2,zz2;  int p;  number num,v;  mp_no mpa,mpt1,mpt2;#if 0  mp_no mpy;#endif  int __branred(double, double *, double *);  int __mpranred(double, mp_no *, int);  /* x=+-INF, x=NaN */  num.d = x;  ux = num.i[HIGH_HALF];  if ((ux&0x7ff00000)==0x7ff00000) return x-x;  w=(x<ZERO) ? -x : x;  /* (I) The case abs(x) <= 1.259e-8 */  if (w<=g1.d)  return x;  /* (II) The case 1.259e-8 < abs(x) <= 0.0608 */  if (w<=g2.d) {    /* First stage */    x2 = x*x;    t2 = x*x2*(d3.d+x2*(d5.d+x2*(d7.d+x2*(d9.d+x2*d11.d))));    if ((y=x+(t2-u1.d*t2)) == x+(t2+u1.d*t2))  return y;    /* Second stage */    c1 = x2*(a15.d+x2*(a17.d+x2*(a19.d+x2*(a21.d+x2*(a23.d+x2*(a25.d+         x2*a27.d))))));    EMULV(x,x,x2,xx2,t1,t2,t3,t4,t5)    ADD2(a13.d,aa13.d,c1,zero.d,c2,cc2,t1,t2)    MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)    ADD2(a11.d,aa11.d,c1,cc1,c2,cc2,t1,t2)    MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)    ADD2(a9.d ,aa9.d ,c1,cc1,c2,cc2,t1,t2)    MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)    ADD2(a7.d ,aa7.d ,c1,cc1,c2,cc2,t1,t2)    MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)    ADD2(a5.d ,aa5.d ,c1,cc1,c2,cc2,t1,t2)    MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)    ADD2(a3.d ,aa3.d ,c1,cc1,c2,cc2,t1,t2)    MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)    MUL2(x ,zero.d,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8)    ADD2(x    ,zero.d,c2,cc2,c1,cc1,t1,t2)    if ((y=c1+(cc1-u2.d*c1)) == c1+(cc1+u2.d*c1))  return y;    return tanMp(x);  }  /* (III) The case 0.0608 < abs(x) <= 0.787 */  if (w<=g3.d) {    /* First stage */    i = ((int) (mfftnhf.d+TWO8*w));    z = w-xfg[i][0].d;  z2 = z*z;   s = (x<ZERO) ? MONE : ONE;    pz = z+z*z2*(e0.d+z2*e1.d);    fi = xfg[i][1].d;   gi = xfg[i][2].d;   t2 = pz*(gi+fi)/(gi-pz);    if ((y=fi+(t2-fi*u3.d))==fi+(t2+fi*u3.d))  return (s*y);    t3 = (t2<ZERO) ? -t2 : t2;    if ((y=fi+(t2-(t4=fi*ua3.d+t3*ub3.d)))==fi+(t2+t4))  return (s*y);    /* Second stage */    ffi = xfg[i][3].d;    c1 = z2*(a7.d+z2*(a9.d+z2*a11.d));    EMULV(z,z,z2,zz2,t1,t2,t3,t4,t5)    ADD2(a5.d,aa5.d,c1,zero.d,c2,cc2,t1,t2)    MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)    ADD2(a3.d,aa3.d,c1,cc1,c2,cc2,t1,t2)    MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)    MUL2(z ,zero.d,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8)    ADD2(z ,zero.d,c2,cc2,c1,cc1,t1,t2)    ADD2(fi ,ffi,c1,cc1,c2,cc2,t1,t2)    MUL2(fi ,ffi,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8)    SUB2(one.d,zero.d,c3,cc3,c1,cc1,t1,t2)    DIV2(c2,cc2,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)    if ((y=c3+(cc3-u4.d*c3))==c3+(cc3+u4.d*c3))  return (s*y);    return tanMp(x);  }  /* (---) The case 0.787 < abs(x) <= 25 */  if (w<=g4.d) {    /* Range reduction by algorithm i */    t = (x*hpinv.d + toint.d);    xn = t - toint.d;    v.d = t;    t1 = (x - xn*mp1.d) - xn*mp2.d;    n =v.i[LOW_HALF] & 0x00000001;    da = xn*mp3.d;    a=t1-da;    da = (t1-a)-da;    if (a<ZERO)  {ya=-a;  yya=-da;  sy=MONE;}    else         {ya= a;  yya= da;  sy= ONE;}    /* (IV),(V) The case 0.787 < abs(x) <= 25,    abs(y) <= 1e-7 */    if (ya<=gy1.d)  return tanMp(x);    /* (VI) The case 0.787 < abs(x) <= 25,    1e-7 < abs(y) <= 0.0608 */    if (ya<=gy2.d) {      a2 = a*a;      t2 = da+a*a2*(d3.d+a2*(d5.d+a2*(d7.d+a2*(d9.d+a2*d11.d))));      if (n) {        /* First stage -cot */        EADD(a,t2,b,db)        DIV2(one.d,zero.d,b,db,c,dc,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)        if ((y=c+(dc-u6.d*c))==c+(dc+u6.d*c))  return (-y); }      else {        /* First stage tan */        if ((y=a+(t2-u5.d*a))==a+(t2+u5.d*a))  return y; }      /* Second stage */      /* Range reduction by algorithm ii */      t = (x*hpinv.d + toint.d);      xn = t - toint.d;      v.d = t;      t1 = (x - xn*mp1.d) - xn*mp2.d;      n =v.i[LOW_HALF] & 0x00000001;      da = xn*pp3.d;      t=t1-da;      da = (t1-t)-da;      t1 = xn*pp4.d;      a = t - t1;      da = ((t-a)-t1)+da;      /* Second stage */      EADD(a,da,t1,t2)   a=t1;  da=t2;      MUL2(a,da,a,da,x2,xx2,t1,t2,t3,t4,t5,t6,t7,t8)      c1 = x2*(a15.d+x2*(a17.d+x2*(a19.d+x2*(a21.d+x2*(a23.d+x2*(a25.d+           x2*a27.d))))));      ADD2(a13.d,aa13.d,c1,zero.d,c2,cc2,t1,t2)      MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)      ADD2(a11.d,aa11.d,c1,cc1,c2,cc2,t1,t2)      MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)      ADD2(a9.d ,aa9.d ,c1,cc1,c2,cc2,t1,t2)      MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)      ADD2(a7.d ,aa7.d ,c1,cc1,c2,cc2,t1,t2)      MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)      ADD2(a5.d ,aa5.d ,c1,cc1,c2,cc2,t1,t2)      MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)      ADD2(a3.d ,aa3.d ,c1,cc1,c2,cc2,t1,t2)      MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)      MUL2(a ,da ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8)      ADD2(a  ,da  ,c2,cc2,c1,cc1,t1,t2)      if (n) {        /* Second stage -cot */        DIV2(one.d,zero.d,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)        if ((y=c2+(cc2-u8.d*c2)) == c2+(cc2+u8.d*c2))  return (-y); }      else {        /* Second stage tan */        if ((y=c1+(cc1-u7.d*c1)) == c1+(cc1+u7.d*c1))  return y; }      return tanMp(x);    }    /* (VII) The case 0.787 < abs(x) <= 25,    0.0608 < abs(y) <= 0.787 */    /* First stage */    i = ((int) (mfftnhf.d+TWO8*ya));    z = (z0=(ya-xfg[i][0].d))+yya;  z2 = z*z;    pz = z+z*z2*(e0.d+z2*e1.d);    fi = xfg[i][1].d;   gi = xfg[i][2].d;    if (n) {      /* -cot */      t2 = pz*(fi+gi)/(fi+pz);      if ((y=gi-(t2-gi*u10.d))==gi-(t2+gi*u10.d))  return (-sy*y);      t3 = (t2<ZERO) ? -t2 : t2;      if ((y=gi-(t2-(t4=gi*ua10.d+t3*ub10.d)))==gi-(t2+t4))  return (-sy*y); }    else   {      /* tan */      t2 = pz*(gi+fi)/(gi-pz);      if ((y=fi+(t2-fi*u9.d))==fi+(t2+fi*u9.d))  return (sy*y);      t3 = (t2<ZERO) ? -t2 : t2;      if ((y=fi+(t2-(t4=fi*ua9.d+t3*ub9.d)))==fi+(t2+t4))  return (sy*y); }    /* Second stage */    ffi = xfg[i][3].d;    EADD(z0,yya,z,zz)    MUL2(z,zz,z,zz,z2,zz2,t1,t2,t3,t4,t5,t6,t7,t8)    c1 = z2*(a7.d+z2*(a9.d+z2*a11.d));    ADD2(a5.d,aa5.d,c1,zero.d,c2,cc2,t1,t2)    MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)    ADD2(a3.d,aa3.d,c1,cc1,c2,cc2,t1,t2)    MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8)    MUL2(z ,zz ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8)    ADD2(z ,zz ,c2,cc2,c1,cc1,t1,t2)    ADD2(fi ,ffi,c1,cc1,c2,cc2,t1,t2)    MUL2(fi ,ffi,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8)    SUB2(one.d,zero.d,c3,cc3,c1,cc1,t1,t2)    if (n) {      /* -cot */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -