⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_pow.c

📁 glibc 2.9,最新版的C语言库函数
💻 C
字号:
/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001, 2002, 2004 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//***************************************************************************//*  MODULE_NAME: upow.c                                                    *//*                                                                         *//*  FUNCTIONS: upow                                                        *//*             power1                                                      *//*             my_log2                                                        *//*             log1                                                        *//*             checkint                                                    *//* FILES NEEDED: dla.h endian.h mpa.h mydefs.h                             *//*               halfulp.c mpexp.c mplog.c slowexp.c slowpow.c mpa.c       *//*                          uexp.c  upow.c			           *//*               root.tbl uexp.tbl upow.tbl                                *//* An ultimate power routine. Given two IEEE double machine numbers y,x    *//* it computes the correctly rounded (to nearest) value of x^y.            *//* Assumption: Machine arithmetic operations are performed in              *//* round to nearest mode of IEEE 754 standard.                             *//*                                                                         *//***************************************************************************/#include "endian.h"#include "upow.h"#include "dla.h"#include "mydefs.h"#include "MathLib.h"#include "upow.tbl"#include "math_private.h"double __exp1(double x, double xx, double error);static double log1(double x, double *delta, double *error);static double my_log2(double x, double *delta, double *error);double __slowpow(double x, double y,double z);static double power1(double x, double y);static int checkint(double x);/***************************************************************************//* An ultimate power routine. Given two IEEE double machine numbers y,x    *//* it computes the correctly rounded (to nearest) value of X^y.            *//***************************************************************************/double __ieee754_pow(double x, double y) {  double z,a,aa,error, t,a1,a2,y1,y2;#if 0  double gor=1.0;#endif  mynumber u,v;  int k;  int4 qx,qy;  v.x=y;  u.x=x;  if (v.i[LOW_HALF] == 0) { /* of y */    qx = u.i[HIGH_HALF]&0x7fffffff;    /* Checking  if x is not too small to compute */    if (((qx==0x7ff00000)&&(u.i[LOW_HALF]!=0))||(qx>0x7ff00000)) return NaNQ.x;    if (y == 1.0) return x;    if (y == 2.0) return x*x;    if (y == -1.0) return 1.0/x;    if (y == 0) return 1.0;  }  /* else */  if(((u.i[HIGH_HALF]>0 && u.i[HIGH_HALF]<0x7ff00000)||        /* x>0 and not x->0 */       (u.i[HIGH_HALF]==0 && u.i[LOW_HALF]!=0))  &&                                      /*   2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */      (v.i[HIGH_HALF]&0x7fffffff) < 0x4ff00000) {              /* if y<-1 or y>1   */    z = log1(x,&aa,&error);                                 /* x^y  =e^(y log (X)) */    t = y*134217729.0;    y1 = t - (t-y);    y2 = y - y1;    t = z*134217729.0;    a1 = t - (t-z);    a2 = (z - a1)+aa;    a = y1*a1;    aa = y2*a1 + y*a2;    a1 = a+aa;    a2 = (a-a1)+aa;    error = error*ABS(y);    t = __exp1(a1,a2,1.9e16*error);     /* return -10 or 0 if wasn't computed exactly */    return (t>0)?t:power1(x,y);  }  if (x == 0) {    if (((v.i[HIGH_HALF] & 0x7fffffff) == 0x7ff00000 && v.i[LOW_HALF] != 0)	|| (v.i[HIGH_HALF] & 0x7fffffff) > 0x7ff00000)      return y;    if (ABS(y) > 1.0e20) return (y>0)?0:INF.x;    k = checkint(y);    if (k == -1)      return y < 0 ? 1.0/x : x;    else      return y < 0 ? 1.0/ABS(x) : 0.0;                               /* return 0 */  }  qx = u.i[HIGH_HALF]&0x7fffffff;  /*   no sign   */  qy = v.i[HIGH_HALF]&0x7fffffff;  /*   no sign   */  if (qx >= 0x7ff00000 && (qx > 0x7ff00000 || u.i[LOW_HALF] != 0)) return NaNQ.x;  if (qy >= 0x7ff00000 && (qy > 0x7ff00000 || v.i[LOW_HALF] != 0))    return x == 1.0 ? 1.0 : NaNQ.x;  /* if x<0 */  if (u.i[HIGH_HALF] < 0) {    k = checkint(y);    if (k==0) {      if (qy == 0x7ff00000) {	if (x == -1.0) return 1.0;	else if (x > -1.0) return v.i[HIGH_HALF] < 0 ? INF.x : 0.0;	else return v.i[HIGH_HALF] < 0 ? 0.0 : INF.x;      }      else if (qx == 0x7ff00000)	return y < 0 ? 0.0 : INF.x;      return NaNQ.x;                              /* y not integer and x<0 */    }    else if (qx == 0x7ff00000)      {	if (k < 0)	  return y < 0 ? nZERO.x : nINF.x;	else	  return y < 0 ? 0.0 : INF.x;      }    return (k==1)?__ieee754_pow(-x,y):-__ieee754_pow(-x,y); /* if y even or odd */  }  /* x>0 */  if (qx == 0x7ff00000)                              /* x= 2^-0x3ff */    {if (y == 0) return NaNQ.x;    return (y>0)?x:0; }  if (qy > 0x45f00000 && qy < 0x7ff00000) {    if (x == 1.0) return 1.0;    if (y>0) return (x>1.0)?INF.x:0;    if (y<0) return (x<1.0)?INF.x:0;  }  if (x == 1.0) return 1.0;  if (y>0) return (x>1.0)?INF.x:0;  if (y<0) return (x<1.0)?INF.x:0;  return 0;     /* unreachable, to make the compiler happy */}/**************************************************************************//* Computing x^y using more accurate but more slow log routine            *//**************************************************************************/static double power1(double x, double y) {  double z,a,aa,error, t,a1,a2,y1,y2;  z = my_log2(x,&aa,&error);  t = y*134217729.0;  y1 = t - (t-y);  y2 = y - y1;  t = z*134217729.0;  a1 = t - (t-z);  a2 = z - a1;  a = y*z;  aa = ((y1*a1-a)+y1*a2+y2*a1)+y2*a2+aa*y;  a1 = a+aa;  a2 = (a-a1)+aa;  error = error*ABS(y);  t = __exp1(a1,a2,1.9e16*error);  return (t >= 0)?t:__slowpow(x,y,z);}/****************************************************************************//* Computing log(x) (x is left argument). The result is the returned double *//* + the parameter delta.                                                   *//* The result is bounded by error (rightmost argument)                      *//****************************************************************************/static double log1(double x, double *delta, double *error) {  int i,j,m;#if 0  int n;#endif  double uu,vv,eps,nx,e,e1,e2,t,t1,t2,res,add=0;#if 0  double cor;#endif  mynumber u,v;#ifdef BIG_ENDI  mynumber/**/ two52          = {{0x43300000, 0x00000000}}; /* 2**52         */#else#ifdef LITTLE_ENDI  mynumber/**/ two52          = {{0x00000000, 0x43300000}}; /* 2**52         */#endif#endif  u.x = x;  m = u.i[HIGH_HALF];  *error = 0;  *delta = 0;  if (m < 0x00100000)             /*  1<x<2^-1007 */    { x = x*t52.x; add = -52.0; u.x = x; m = u.i[HIGH_HALF];}  if ((m&0x000fffff) < 0x0006a09e)    {u.i[HIGH_HALF] = (m&0x000fffff)|0x3ff00000; two52.i[LOW_HALF]=(m>>20); }  else    {u.i[HIGH_HALF] = (m&0x000fffff)|0x3fe00000; two52.i[LOW_HALF]=(m>>20)+1; }  v.x = u.x + bigu.x;  uu = v.x - bigu.x;  i = (v.i[LOW_HALF]&0x000003ff)<<2;  if (two52.i[LOW_HALF] == 1023)         /* nx = 0              */  {      if (i > 1192 && i < 1208)          /* |x-1| < 1.5*2**-10  */      {	  t = x - 1.0;	  t1 = (t+5.0e6)-5.0e6;	  t2 = t-t1;	  e1 = t - 0.5*t1*t1;	  e2 = t*t*t*(r3+t*(r4+t*(r5+t*(r6+t*(r7+t*r8)))))-0.5*t2*(t+t1);	  res = e1+e2;	  *error = 1.0e-21*ABS(t);	  *delta = (e1-res)+e2;	  return res;      }                  /* |x-1| < 1.5*2**-10  */      else      {	  v.x = u.x*(ui.x[i]+ui.x[i+1])+bigv.x;	  vv = v.x-bigv.x;	  j = v.i[LOW_HALF]&0x0007ffff;	  j = j+j+j;	  eps = u.x - uu*vv;	  e1 = eps*ui.x[i];	  e2 = eps*(ui.x[i+1]+vj.x[j]*(ui.x[i]+ui.x[i+1]));	  e = e1+e2;	  e2 =  ((e1-e)+e2);	  t=ui.x[i+2]+vj.x[j+1];	  t1 = t+e;	  t2 = (((t-t1)+e)+(ui.x[i+3]+vj.x[j+2]))+e2+e*e*(p2+e*(p3+e*p4));	  res=t1+t2;	  *error = 1.0e-24;	  *delta = (t1-res)+t2;	  return res;      }  }   /* nx = 0 */  else                            /* nx != 0   */  {      eps = u.x - uu;      nx = (two52.x - two52e.x)+add;      e1 = eps*ui.x[i];      e2 = eps*ui.x[i+1];      e=e1+e2;      e2 = (e1-e)+e2;      t=nx*ln2a.x+ui.x[i+2];      t1=t+e;      t2=(((t-t1)+e)+nx*ln2b.x+ui.x[i+3]+e2)+e*e*(q2+e*(q3+e*(q4+e*(q5+e*q6))));      res = t1+t2;      *error = 1.0e-21;      *delta = (t1-res)+t2;      return res;  }                                /* nx != 0   */}/****************************************************************************//* More slow but more accurate routine of log                               *//* Computing log(x)(x is left argument).The result is return double + delta.*//* The result is bounded by error (right argument)                           *//****************************************************************************/static double my_log2(double x, double *delta, double *error) {  int i,j,m;#if 0  int n;#endif  double uu,vv,eps,nx,e,e1,e2,t,t1,t2,res,add=0;#if 0  double cor;#endif  double ou1,ou2,lu1,lu2,ov,lv1,lv2,a,a1,a2;  double y,yy,z,zz,j1,j2,j3,j4,j5,j6,j7,j8;  mynumber u,v;#ifdef BIG_ENDI  mynumber/**/ two52          = {{0x43300000, 0x00000000}}; /* 2**52         */#else#ifdef LITTLE_ENDI  mynumber/**/ two52          = {{0x00000000, 0x43300000}}; /* 2**52         */#endif#endif  u.x = x;  m = u.i[HIGH_HALF];  *error = 0;  *delta = 0;  add=0;  if (m<0x00100000) {  /* x < 2^-1022 */    x = x*t52.x;  add = -52.0; u.x = x; m = u.i[HIGH_HALF]; }  if ((m&0x000fffff) < 0x0006a09e)    {u.i[HIGH_HALF] = (m&0x000fffff)|0x3ff00000; two52.i[LOW_HALF]=(m>>20); }  else    {u.i[HIGH_HALF] = (m&0x000fffff)|0x3fe00000; two52.i[LOW_HALF]=(m>>20)+1; }  v.x = u.x + bigu.x;  uu = v.x - bigu.x;  i = (v.i[LOW_HALF]&0x000003ff)<<2;  /*------------------------------------- |x-1| < 2**-11-------------------------------  */  if ((two52.i[LOW_HALF] == 1023)  && (i == 1200))  {      t = x - 1.0;      EMULV(t,s3,y,yy,j1,j2,j3,j4,j5);      ADD2(-0.5,0,y,yy,z,zz,j1,j2);      MUL2(t,0,z,zz,y,yy,j1,j2,j3,j4,j5,j6,j7,j8);      MUL2(t,0,y,yy,z,zz,j1,j2,j3,j4,j5,j6,j7,j8);      e1 = t+z;      e2 = (((t-e1)+z)+zz)+t*t*t*(ss3+t*(s4+t*(s5+t*(s6+t*(s7+t*s8)))));      res = e1+e2;      *error = 1.0e-25*ABS(t);      *delta = (e1-res)+e2;      return res;  }  /*----------------------------- |x-1| > 2**-11  --------------------------  */  else  {          /*Computing log(x) according to log table                        */      nx = (two52.x - two52e.x)+add;      ou1 = ui.x[i];      ou2 = ui.x[i+1];      lu1 = ui.x[i+2];      lu2 = ui.x[i+3];      v.x = u.x*(ou1+ou2)+bigv.x;      vv = v.x-bigv.x;      j = v.i[LOW_HALF]&0x0007ffff;      j = j+j+j;      eps = u.x - uu*vv;      ov  = vj.x[j];      lv1 = vj.x[j+1];      lv2 = vj.x[j+2];      a = (ou1+ou2)*(1.0+ov);      a1 = (a+1.0e10)-1.0e10;      a2 = a*(1.0-a1*uu*vv);      e1 = eps*a1;      e2 = eps*a2;      e = e1+e2;      e2 = (e1-e)+e2;      t=nx*ln2a.x+lu1+lv1;      t1 = t+e;      t2 = (((t-t1)+e)+(lu2+lv2+nx*ln2b.x+e2))+e*e*(p2+e*(p3+e*p4));      res=t1+t2;      *error = 1.0e-27;      *delta = (t1-res)+t2;      return res;  }}/**********************************************************************//* Routine receives a double x and checks if it is an integer. If not *//* it returns 0, else it returns 1 if even or -1 if odd.              *//**********************************************************************/static int checkint(double x) {  union {int4 i[2]; double x;} u;  int k,m,n;#if 0  int l;#endif  u.x = x;  m = u.i[HIGH_HALF]&0x7fffffff;    /* no sign */  if (m >= 0x7ff00000) return 0;    /*  x is +/-inf or NaN  */  if (m >= 0x43400000) return 1;    /*  |x| >= 2**53   */  if (m < 0x40000000) return 0;     /* |x| < 2,  can not be 0 or 1  */  n = u.i[LOW_HALF];  k = (m>>20)-1023;                 /*  1 <= k <= 52   */  if (k == 52) return (n&1)? -1:1;  /* odd or even*/  if (k>20) {    if (n<<(k-20)) return 0;        /* if not integer */    return (n<<(k-21))?-1:1;  }  if (n) return 0;                  /*if  not integer*/  if (k == 20) return (m&1)? -1:1;  if (m<<(k+12)) return 0;  return (m<<(k+11))?-1:1;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -