⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slowpow.c

📁 glibc 2.9,最新版的C语言库函数
💻 C
字号:
/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//*************************************************************************//* MODULE_NAME:slowpow.c                                                 *//*                                                                       *//* FUNCTION:slowpow                                                      *//*                                                                       *//*FILES NEEDED:mpa.h                                                     *//*             mpa.c mpexp.c mplog.c halfulp.c                           *//*                                                                       *//* Given two IEEE double machine numbers y,x , routine  computes the     *//* correctly  rounded (to nearest) value of x^y. Result calculated  by   *//* multiplication (in halfulp.c) or if result isn't accurate enough      *//* then routine converts x and y into multi-precision doubles     and    *//* calls to mpexp routine                                                *//*************************************************************************/#include "mpa.h"#include "math_private.h"void __mpexp(mp_no *x, mp_no *y, int p);void __mplog(mp_no *x, mp_no *y, int p);double ulog(double);double __halfulp(double x,double y);double __slowpow(double x, double y, double z) {  double res,res1;  mp_no mpx, mpy, mpz,mpw,mpp,mpr,mpr1;  static const mp_no eps = {-3,{1.0,4.0}};  int p;  res = __halfulp(x,y);        /* halfulp() returns -10 or x^y             */  if (res >= 0) return res;  /* if result was really computed by halfulp */                  /*  else, if result was not really computed by halfulp */  p = 10;         /*  p=precision   */  __dbl_mp(x,&mpx,p);  __dbl_mp(y,&mpy,p);  __dbl_mp(z,&mpz,p);  __mplog(&mpx, &mpz, p);     /* log(x) = z   */  __mul(&mpy,&mpz,&mpw,p);    /*  y * z =w    */  __mpexp(&mpw, &mpp, p);     /*  e^w =pp     */  __add(&mpp,&eps,&mpr,p);    /*  pp+eps =r   */  __mp_dbl(&mpr, &res, p);  __sub(&mpp,&eps,&mpr1,p);   /*  pp -eps =r1 */  __mp_dbl(&mpr1, &res1, p);  /*  converting into double precision */  if (res == res1) return res;  p = 32;     /* if we get here result wasn't calculated exactly, continue */  __dbl_mp(x,&mpx,p);                          /* for more exact calculation */  __dbl_mp(y,&mpy,p);  __dbl_mp(z,&mpz,p);  __mplog(&mpx, &mpz, p);   /* log(c)=z  */  __mul(&mpy,&mpz,&mpw,p);  /* y*z =w    */  __mpexp(&mpw, &mpp, p);   /* e^w=pp    */  __mp_dbl(&mpp, &res, p);  /* converting into double precision */  return res;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -