📄 e_asin.c
字号:
/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//******************************************************************//* MODULE_NAME:uasncs.c *//* *//* FUNCTIONS: uasin *//* uacos *//* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h *//* doasin.c sincos32.c dosincos.c mpa.c *//* sincos.tbl asincos.tbl powtwo.tbl root.tbl *//* *//* Ultimate asin/acos routines. Given an IEEE double machine *//* number x, compute the correctly rounded value of *//* arcsin(x)or arccos(x) according to the function called. *//* Assumption: Machine arithmetic operations are performed in *//* round to nearest mode of IEEE 754 standard. *//* *//******************************************************************/#include "endian.h"#include "mydefs.h"#include "asincos.tbl"#include "root.tbl"#include "powtwo.tbl"#include "MathLib.h"#include "uasncs.h"#include "math_private.h"void __doasin(double x, double dx, double w[]);void __dubsin(double x, double dx, double v[]);void __dubcos(double x, double dx, double v[]);void __docos(double x, double dx, double v[]);double __sin32(double x, double res, double res1);double __cos32(double x, double res, double res1);/***************************************************************************//* An ultimate asin routine. Given an IEEE double machine number x *//* it computes the correctly rounded (to nearest) value of arcsin(x) *//***************************************************************************/double __ieee754_asin(double x){ double x1,x2,xx,s1,s2,res1,p,t,res,r,cor,cc,y,c,z,w[2]; mynumber u,v; int4 k,m,n;#if 0 int4 nn;#endif u.x = x; m = u.i[HIGH_HALF]; k = 0x7fffffff&m; /* no sign */ if (k < 0x3e500000) return x; /* for x->0 => sin(x)=x */ /*----------------------2^-26 <= |x| < 2^ -3 -----------------*/ else if (k < 0x3fc00000) { x2 = x*x; t = (((((f6*x2 + f5)*x2 + f4)*x2 + f3)*x2 + f2)*x2 + f1)*(x2*x); res = x+t; /* res=arcsin(x) according to Taylor series */ cor = (x-res)+t; if (res == res+1.025*cor) return res; else { x1 = x+big; xx = x*x; x1 -= big; x2 = x - x1; p = x1*x1*x1; s1 = a1.x*p; s2 = ((((((c7*xx + c6)*xx + c5)*xx + c4)*xx + c3)*xx + c2)*xx*xx*x + ((a1.x+a2.x)*x2*x2+ 0.5*x1*x)*x2) + a2.x*p; res1 = x+s1; s2 = ((x-res1)+s1)+s2; res = res1+s2; cor = (res1-res)+s2; if (res == res+1.00014*cor) return res; else { __doasin(x,0,w); if (w[0]==(w[0]+1.00000001*w[1])) return w[0]; else { y=ABS(x); res=ABS(w[0]); res1=ABS(w[0]+1.1*w[1]); return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1); } } } } /*---------------------0.125 <= |x| < 0.5 -----------------------------*/ else if (k < 0x3fe00000) { if (k<0x3fd00000) n = 11*((k&0x000fffff)>>15); else n = 11*((k&0x000fffff)>>14)+352; if (m>0) xx = x - asncs.x[n]; else xx = -x - asncs.x[n]; t = asncs.x[n+1]*xx; p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5] +xx*asncs.x[n+6]))))+asncs.x[n+7]; t+=p; res =asncs.x[n+8] +t; cor = (asncs.x[n+8]-res)+t; if (res == res+1.05*cor) return (m>0)?res:-res; else { r=asncs.x[n+8]+xx*asncs.x[n+9]; t=((asncs.x[n+8]-r)+xx*asncs.x[n+9])+(p+xx*asncs.x[n+10]); res = r+t; cor = (r-res)+t; if (res == res+1.0005*cor) return (m>0)?res:-res; else { res1=res+1.1*cor; z=0.5*(res1-res); __dubsin(res,z,w); z=(w[0]-ABS(x))+w[1]; if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); else { y=ABS(x); return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1); } } } } /* else if (k < 0x3fe00000) */ /*-------------------- 0.5 <= |x| < 0.75 -----------------------------*/ else if (k < 0x3fe80000) { n = 1056+((k&0x000fe000)>>11)*3; if (m>0) xx = x - asncs.x[n]; else xx = -x - asncs.x[n]; t = asncs.x[n+1]*xx; p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5] +xx*(asncs.x[n+6]+xx*asncs.x[n+7])))))+asncs.x[n+8]; t+=p; res =asncs.x[n+9] +t; cor = (asncs.x[n+9]-res)+t; if (res == res+1.01*cor) return (m>0)?res:-res; else { r=asncs.x[n+9]+xx*asncs.x[n+10]; t=((asncs.x[n+9]-r)+xx*asncs.x[n+10])+(p+xx*asncs.x[n+11]); res = r+t; cor = (r-res)+t; if (res == res+1.0005*cor) return (m>0)?res:-res; else { res1=res+1.1*cor; z=0.5*(res1-res); __dubsin(res,z,w); z=(w[0]-ABS(x))+w[1]; if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); else { y=ABS(x); return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1); } } } } /* else if (k < 0x3fe80000) */ /*--------------------- 0.75 <= |x|< 0.921875 ----------------------*/ else if (k < 0x3fed8000) { n = 992+((k&0x000fe000)>>13)*13; if (m>0) xx = x - asncs.x[n]; else xx = -x - asncs.x[n]; t = asncs.x[n+1]*xx; p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5] +xx*(asncs.x[n+6]+xx*(asncs.x[n+7]+xx*asncs.x[n+8]))))))+asncs.x[n+9]; t+=p; res =asncs.x[n+10] +t; cor = (asncs.x[n+10]-res)+t; if (res == res+1.01*cor) return (m>0)?res:-res; else { r=asncs.x[n+10]+xx*asncs.x[n+11]; t=((asncs.x[n+10]-r)+xx*asncs.x[n+11])+(p+xx*asncs.x[n+12]); res = r+t; cor = (r-res)+t; if (res == res+1.0008*cor) return (m>0)?res:-res; else { res1=res+1.1*cor; z=0.5*(res1-res); y=hp0.x-res; z=((hp0.x-y)-res)+(hp1.x-z); __dubcos(y,z,w); z=(w[0]-ABS(x))+w[1]; if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); else { y=ABS(x); return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1); } } } } /* else if (k < 0x3fed8000) */ /*-------------------0.921875 <= |x| < 0.953125 ------------------------*/ else if (k < 0x3fee8000) { n = 884+((k&0x000fe000)>>13)*14; if (m>0) xx = x - asncs.x[n]; else xx = -x - asncs.x[n]; t = asncs.x[n+1]*xx; p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ xx*(asncs.x[n+5]+xx*(asncs.x[n+6] +xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+ xx*asncs.x[n+9])))))))+asncs.x[n+10]; t+=p; res =asncs.x[n+11] +t; cor = (asncs.x[n+11]-res)+t; if (res == res+1.01*cor) return (m>0)?res:-res; else { r=asncs.x[n+11]+xx*asncs.x[n+12]; t=((asncs.x[n+11]-r)+xx*asncs.x[n+12])+(p+xx*asncs.x[n+13]); res = r+t; cor = (r-res)+t; if (res == res+1.0007*cor) return (m>0)?res:-res; else { res1=res+1.1*cor; z=0.5*(res1-res); y=(hp0.x-res)-z; z=y+hp1.x; y=(y-z)+hp1.x; __dubcos(z,y,w); z=(w[0]-ABS(x))+w[1]; if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); else { y=ABS(x); return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1); } } } } /* else if (k < 0x3fee8000) */ /*--------------------0.953125 <= |x| < 0.96875 ------------------------*/ else if (k < 0x3fef0000) { n = 768+((k&0x000fe000)>>13)*15; if (m>0) xx = x - asncs.x[n]; else xx = -x - asncs.x[n]; t = asncs.x[n+1]*xx; p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ xx*(asncs.x[n+5]+xx*(asncs.x[n+6] +xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+ xx*(asncs.x[n+9]+xx*asncs.x[n+10]))))))))+asncs.x[n+11]; t+=p; res =asncs.x[n+12] +t; cor = (asncs.x[n+12]-res)+t; if (res == res+1.01*cor) return (m>0)?res:-res; else { r=asncs.x[n+12]+xx*asncs.x[n+13]; t=((asncs.x[n+12]-r)+xx*asncs.x[n+13])+(p+xx*asncs.x[n+14]); res = r+t; cor = (r-res)+t; if (res == res+1.0007*cor) return (m>0)?res:-res; else { res1=res+1.1*cor; z=0.5*(res1-res); y=(hp0.x-res)-z; z=y+hp1.x; y=(y-z)+hp1.x; __dubcos(z,y,w); z=(w[0]-ABS(x))+w[1]; if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); else { y=ABS(x); return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1); } } } } /* else if (k < 0x3fef0000) */ /*--------------------0.96875 <= |x| < 1 --------------------------------*/ else if (k<0x3ff00000) { z = 0.5*((m>0)?(1.0-x):(1.0+x)); v.x=z; k=v.i[HIGH_HALF]; t=inroot[(k&0x001fffff)>>14]*powtwo[511-(k>>21)]; r=1.0-t*t*z; t = t*(rt0+r*(rt1+r*(rt2+r*rt3))); c=t*z; t=c*(1.5-0.5*t*c); y=(c+t24)-t24; cc = (z-y*y)/(t+y); p=(((((f6*z+f5)*z+f4)*z+f3)*z+f2)*z+f1)*z; cor = (hp1.x - 2.0*cc)-2.0*(y+cc)*p; res1 = hp0.x - 2.0*y; res =res1 + cor; if (res == res+1.003*((res1-res)+cor)) return (m>0)?res:-res; else { c=y+cc; cc=(y-c)+cc; __doasin(c,cc,w); res1=hp0.x-2.0*w[0]; cor=((hp0.x-res1)-2.0*w[0])+(hp1.x-2.0*w[1]); res = res1+cor; cor = (res1-res)+cor; if (res==(res+1.0000001*cor)) return (m>0)?res:-res; else { y=ABS(x); res1=res+1.1*cor; return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1); } } } /* else if (k < 0x3ff00000) */ /*---------------------------- |x|>=1 -------------------------------*/ else if (k==0x3ff00000 && u.i[LOW_HALF]==0) return (m>0)?hp0.x:-hp0.x; else if (k>0x7ff00000 || (k == 0x7ff00000 && u.i[LOW_HALF] != 0)) return x; else {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -