📄 e_j1l.c
字号:
-1.059928728869218962607068840646564457980E-2L, -1.212070036005832342565792241385459023801E-1L, -6.688350110633603958684302153362735625156E-1L, -1.793587878197360221340277951304429821582E0L, -2.225407682237197485644647380483725045326E0L, -1.123402135458940189438898496348239744403E0L, -1.679187241566347077204805190763597299805E-1L, -1.458550613639093752909985189067233504148E-3L,};#define NQ2_2r3D 8static const long double Q2_2r3D[NQ2_2r3D + 1] = { 5.415024336507980465169023996403597916115E-5L, 4.179246497380453022046357404266022870788E-3L, 1.136306384261959483095442402929502368598E-1L, 1.422640343719842213484515445393284072830E0L, 8.968786703393158374728850922289204805764E0L, 2.914542473339246127533384118781216495934E1L, 4.781605421020380669870197378210457054685E1L, 3.693865837171883152382820584714795072937E1L, 1.153220502744204904763115556224395893076E1L, /* 1.000000000000000000000000000000000000000E0 */};/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */static long doubleneval (long double x, const long double *p, int n){ long double y; p += n; y = *p--; do { y = y * x + *p--; } while (--n > 0); return y;}/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */static long doubledeval (long double x, const long double *p, int n){ long double y; p += n; y = x + *p--; do { y = y * x + *p--; } while (--n > 0); return y;}/* Bessel function of the first kind, order one. */long double__ieee754_j1l (long double x){ long double xx, xinv, z, p, q, c, s, cc, ss; if (! __finitel (x)) { if (x != x) return x; else return 0.0L; } if (x == 0.0L) return x; xx = fabsl (x); if (xx <= 2.0L) { /* 0 <= x <= 2 */ z = xx * xx; p = xx * z * neval (z, J0_2N, NJ0_2N) / deval (z, J0_2D, NJ0_2D); p += 0.5L * xx; if (x < 0) p = -p; return p; } xinv = 1.0L / xx; z = xinv * xinv; if (xinv <= 0.25) { if (xinv <= 0.125) { if (xinv <= 0.0625) { p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID); q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID); } else { p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D); q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D); } } else if (xinv <= 0.1875) { p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D); q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D); } else { p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D); q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D); } } /* .25 */ else /* if (xinv <= 0.5) */ { if (xinv <= 0.375) { if (xinv <= 0.3125) { p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D); q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D); } else { p = neval (z, P2r7_3r2N, NP2r7_3r2N) / deval (z, P2r7_3r2D, NP2r7_3r2D); q = neval (z, Q2r7_3r2N, NQ2r7_3r2N) / deval (z, Q2r7_3r2D, NQ2r7_3r2D); } } else if (xinv <= 0.4375) { p = neval (z, P2r3_2r7N, NP2r3_2r7N) / deval (z, P2r3_2r7D, NP2r3_2r7D); q = neval (z, Q2r3_2r7N, NQ2r3_2r7N) / deval (z, Q2r3_2r7D, NQ2r3_2r7D); } else { p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D); q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D); } } p = 1.0L + z * p; q = z * q; q = q * xinv + 0.375L * xinv; /* X = x - 3 pi/4 cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4) = 1/sqrt(2) * (-cos(x) + sin(x)) sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4) = -1/sqrt(2) * (sin(x) + cos(x)) cf. Fdlibm. */ __sincosl (xx, &s, &c); ss = -s - c; cc = s - c; z = __cosl (xx + xx); if ((s * c) > 0) cc = z / ss; else ss = z / cc; z = ONEOSQPI * (p * cc - q * ss) / __ieee754_sqrtl (xx); if (x < 0) z = -z; return z;}/* Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2) Peak relative error 6.2e-38 0 <= x <= 2 */#define NY0_2N 7static long double Y0_2N[NY0_2N + 1] = { -6.804415404830253804408698161694720833249E19L, 1.805450517967019908027153056150465849237E19L, -8.065747497063694098810419456383006737312E17L, 1.401336667383028259295830955439028236299E16L, -1.171654432898137585000399489686629680230E14L, 5.061267920943853732895341125243428129150E11L, -1.096677850566094204586208610960870217970E9L, 9.541172044989995856117187515882879304461E5L,};#define NY0_2D 7static long double Y0_2D[NY0_2D + 1] = { 3.470629591820267059538637461549677594549E20L, 4.120796439009916326855848107545425217219E18L, 2.477653371652018249749350657387030814542E16L, 9.954678543353888958177169349272167762797E13L, 2.957927997613630118216218290262851197754E11L, 6.748421382188864486018861197614025972118E8L, 1.173453425218010888004562071020305709319E6L, 1.450335662961034949894009554536003377187E3L, /* 1.000000000000000000000000000000000000000E0 */};/* Bessel function of the second kind, order one. */long double__ieee754_y1l (long double x){ long double xx, xinv, z, p, q, c, s, cc, ss; if (! __finitel (x)) { if (x != x) return x; else return 0.0L; } if (x <= 0.0L) { if (x < 0.0L) return (zero / (zero * x)); return -HUGE_VALL + x; } xx = fabsl (x); if (xx <= 2.0L) { /* 0 <= x <= 2 */ z = xx * xx; p = xx * neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D); p = -TWOOPI / xx + p; p = TWOOPI * __ieee754_logl (x) * __ieee754_j1l (x) + p; return p; } xinv = 1.0L / xx; z = xinv * xinv; if (xinv <= 0.25) { if (xinv <= 0.125) { if (xinv <= 0.0625) { p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID); q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID); } else { p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D); q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D); } } else if (xinv <= 0.1875) { p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D); q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D); } else { p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D); q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D); } } /* .25 */ else /* if (xinv <= 0.5) */ { if (xinv <= 0.375) { if (xinv <= 0.3125) { p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D); q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D); } else { p = neval (z, P2r7_3r2N, NP2r7_3r2N) / deval (z, P2r7_3r2D, NP2r7_3r2D); q = neval (z, Q2r7_3r2N, NQ2r7_3r2N) / deval (z, Q2r7_3r2D, NQ2r7_3r2D); } } else if (xinv <= 0.4375) { p = neval (z, P2r3_2r7N, NP2r3_2r7N) / deval (z, P2r3_2r7D, NP2r3_2r7D); q = neval (z, Q2r3_2r7N, NQ2r3_2r7N) / deval (z, Q2r3_2r7D, NQ2r3_2r7D); } else { p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D); q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D); } } p = 1.0L + z * p; q = z * q; q = q * xinv + 0.375L * xinv; /* X = x - 3 pi/4 cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4) = 1/sqrt(2) * (-cos(x) + sin(x)) sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4) = -1/sqrt(2) * (sin(x) + cos(x)) cf. Fdlibm. */ __sincosl (xx, &s, &c); ss = -s - c; cc = s - c; z = __cosl (xx + xx); if ((s * c) > 0) cc = z / ss; else ss = z / cc; z = ONEOSQPI * (p * ss + q * cc) / __ieee754_sqrtl (xx); return z;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -