⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_sqrtl.c

📁 glibc 2.9,最新版的C语言库函数
💻 C
字号:
/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001, 2004, 2006 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//*********************************************************************//* MODULE_NAME: uroot.c                                              *//*                                                                   *//* FUNCTION:    usqrt                                                *//*                                                                   *//* FILES NEEDED: dla.h endian.h mydefs.h uroot.h                     *//*               uroot.tbl                                           *//*                                                                   *//* An ultimate sqrt routine. Given an IEEE double machine number x   *//* it computes the correctly rounded (to nearest) value of square    *//* root of x.                                                        *//* Assumption: Machine arithmetic operations are performed in        *//* round to nearest mode of IEEE 754 standard.                       *//*                                                                   *//*********************************************************************/#include <math_private.h>typedef unsigned int int4;typedef union {int4 i[4]; long double x; double d[2]; } mynumber;static const  mynumber  t512 = {{0x5ff00000, 0x00000000, 0x00000000, 0x00000000 }},  /* 2^512  */  tm256 = {{0x2ff00000, 0x00000000, 0x00000000, 0x00000000 }};  /* 2^-256 */static const doubletwo54 = 1.80143985094819840000e+16, /* 0x4350000000000000 */twom54 = 5.55111512312578270212e-17; /* 0x3C90000000000000 *//*********************************************************************//* An ultimate sqrt routine. Given an IEEE double machine number x   *//* it computes the correctly rounded (to nearest) value of square    *//* root of x.                                                        *//*********************************************************************/long double __ieee754_sqrtl(long double x) {  static const long double big = 134217728.0, big1 = 134217729.0;  long double t,s,i;  mynumber a,c;  int4 k, l, m;  int n;  double d;  a.x=x;  k=a.i[0] & 0x7fffffff;  /*----------------- 2^-1022  <= | x |< 2^1024  -----------------*/  if (k>0x000fffff && k<0x7ff00000) {    if (x < 0) return (big1-big1)/(big-big);    l = (k&0x001fffff)|0x3fe00000;    if (((a.i[2] & 0x7fffffff) | a.i[3]) != 0) {      n = (int) ((l - k) * 2) >> 21;      m = (a.i[2] >> 20) & 0x7ff;      if (m == 0) {	a.d[1] *= two54;	m = ((a.i[2] >> 20) & 0x7ff) - 54;      }      m += n;      if (m > 0)	a.i[2] = (a.i[2] & 0x800fffff) | (m << 20);      else if (m <= -54) {	a.i[2] &= 0x80000000;	a.i[3] = 0;      } else {	m += 54;	a.i[2] = (a.i[2] & 0x800fffff) | (m << 20);	a.d[1] *= twom54;      }    }    a.i[0] = l;    s = a.x;    d = __ieee754_sqrt (a.d[0]);    c.i[0] = 0x20000000+((k&0x7fe00000)>>1);    c.i[1] = 0;    c.i[2] = 0;    c.i[3] = 0;    i = d;    t = 0.5L * (i + s / i);    i = 0.5L * (t + s / t);    return c.x * i;  }  else {    if (k>=0x7ff00000) {      if (a.i[0] == 0xfff00000 && a.i[1] == 0)	return (big1-big1)/(big-big); /* sqrt (-Inf) = NaN.  */      return x; /* sqrt (NaN) = NaN, sqrt (+Inf) = +Inf.  */    }    if (x == 0) return x;    if (x < 0) return (big1-big1)/(big-big);    return tm256.x*__ieee754_sqrtl(x*t512.x);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -