⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_exp2f.c

📁 glibc 2.9,最新版的C语言库函数
💻 C
字号:
/* Single-precision floating point 2^x.   Copyright (C) 1997,1998,2000,2001,2005,2006 Free Software Foundation, Inc.   This file is part of the GNU C Library.   Contributed by Geoffrey Keating <geoffk@ozemail.com.au>   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Lesser General Public   License as published by the Free Software Foundation; either   version 2.1 of the License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Lesser General Public License for more details.   You should have received a copy of the GNU Lesser General Public   License along with the GNU C Library; if not, write to the Free   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA   02111-1307 USA.  *//* The basic design here is from   Shmuel Gal and Boris Bachelis, "An Accurate Elementary Mathematical   Library for the IEEE Floating Point Standard", ACM Trans. Math. Soft.,   17 (1), March 1991, pp. 26-45.   It has been slightly modified to compute 2^x instead of e^x, and for   single-precision.   */#ifndef _GNU_SOURCE# define _GNU_SOURCE#endif#include <stdlib.h>#include <float.h>#include <ieee754.h>#include <math.h>#include <fenv.h>#include <inttypes.h>#include <math_private.h>#include "t_exp2f.h"static const volatile float TWOM100 = 7.88860905e-31;static const volatile float TWO127 = 1.7014118346e+38;float__ieee754_exp2f (float x){  static const float himark = (float) FLT_MAX_EXP;  static const float lomark = (float) (FLT_MIN_EXP - FLT_MANT_DIG - 1);  /* Check for usual case.  */  if (isless (x, himark) && isgreaterequal (x, lomark))    {      static const float THREEp14 = 49152.0;      int tval, unsafe;      float rx, x22, result;      union ieee754_float ex2_u, scale_u;      fenv_t oldenv;      feholdexcept (&oldenv);#ifdef FE_TONEAREST      /* If we don't have this, it's too bad.  */      fesetround (FE_TONEAREST);#endif      /* 1. Argument reduction.	 Choose integers ex, -128 <= t < 128, and some real	 -1/512 <= x1 <= 1/512 so that	 x = ex + t/512 + x1.	 First, calculate rx = ex + t/256.  */      rx = x + THREEp14;      rx -= THREEp14;      x -= rx;  /* Compute x=x1. */      /* Compute tval = (ex*256 + t)+128.	 Now, t = (tval mod 256)-128 and ex=tval/256  [that's mod, NOT %; and	 /-round-to-nearest not the usual c integer /].  */      tval = (int) (rx * 256.0f + 128.0f);      /* 2. Adjust for accurate table entry.	 Find e so that	 x = ex + t/256 + e + x2	 where -7e-4 < e < 7e-4, and	 (float)(2^(t/256+e))	 is accurate to one part in 2^-64.  */      /* 'tval & 255' is the same as 'tval%256' except that it's always	 positive.	 Compute x = x2.  */      x -= __exp2f_deltatable[tval & 255];      /* 3. Compute ex2 = 2^(t/255+e+ex).  */      ex2_u.f = __exp2f_atable[tval & 255];      tval >>= 8;      unsafe = abs(tval) >= -FLT_MIN_EXP - 1;      ex2_u.ieee.exponent += tval >> unsafe;      scale_u.f = 1.0;      scale_u.ieee.exponent += tval - (tval >> unsafe);      /* 4. Approximate 2^x2 - 1, using a second-degree polynomial,	 with maximum error in [-2^-9 - 2^-14, 2^-9 + 2^-14]	 less than 1.3e-10.  */      x22 = (.24022656679f * x + .69314736128f) * ex2_u.f;      /* 5. Return (2^x2-1) * 2^(t/512+e+ex) + 2^(t/512+e+ex).  */      fesetenv (&oldenv);      result = x22 * x + ex2_u.f;      if (!unsafe)	return result;      else	return result * scale_u.f;    }  /* Exceptional cases:  */  else if (isless (x, himark))    {      if (__isinff (x))	/* e^-inf == 0, with no error.  */	return 0;      else	/* Underflow */	return TWOM100 * TWOM100;    }  else    /* Return x, if x is a NaN or Inf; or overflow, otherwise.  */    return TWO127*x;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -