📄 slowpow.c
字号:
/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001, 2006 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//*************************************************************************//* MODULE_NAME:slowpow.c *//* *//* FUNCTION:slowpow *//* *//*FILES NEEDED:mpa.h *//* mpa.c mpexp.c mplog.c halfulp.c *//* *//* Given two IEEE double machine numbers y,x , routine computes the *//* correctly rounded (to nearest) value of x^y. Result calculated by *//* multiplication (in halfulp.c) or if result isn't accurate enough *//* then routine converts x and y into multi-precision doubles and *//* recompute. *//*************************************************************************/#include "mpa.h"#include "math_private.h"void __mpexp (mp_no * x, mp_no * y, int p);void __mplog (mp_no * x, mp_no * y, int p);double ulog (double);double __halfulp (double x, double y);double__slowpow (double x, double y, double z){ double res, res1; long double ldw, ldz, ldpp; static const long double ldeps = 0x4.0p-96; res = __halfulp (x, y); /* halfulp() returns -10 or x^y */ if (res >= 0) return res; /* if result was really computed by halfulp */ /* else, if result was not really computed by halfulp */ /* Compute pow as long double, 106 bits */ ldz = __ieee754_logl ((long double) x); ldw = (long double) y *ldz; ldpp = __ieee754_expl (ldw); res = (double) (ldpp + ldeps); res1 = (double) (ldpp - ldeps); if (res != res1) /* if result still not accurate enough */ { /* use mpa for higher persision. */ mp_no mpx, mpy, mpz, mpw, mpp, mpr, mpr1; static const mp_no eps = { -3, {1.0, 4.0} }; int p; p = 10; /* p=precision 240 bits */ __dbl_mp (x, &mpx, p); __dbl_mp (y, &mpy, p); __dbl_mp (z, &mpz, p); __mplog (&mpx, &mpz, p); /* log(x) = z */ __mul (&mpy, &mpz, &mpw, p); /* y * z =w */ __mpexp (&mpw, &mpp, p); /* e^w =pp */ __add (&mpp, &eps, &mpr, p); /* pp+eps =r */ __mp_dbl (&mpr, &res, p); __sub (&mpp, &eps, &mpr1, p); /* pp -eps =r1 */ __mp_dbl (&mpr1, &res1, p); /* converting into double precision */ if (res == res1) return res; /* if we get here result wasn't calculated exactly, continue for more exact calculation using 768 bits. */ p = 32; __dbl_mp (x, &mpx, p); __dbl_mp (y, &mpy, p); __dbl_mp (z, &mpz, p); __mplog (&mpx, &mpz, p); /* log(c)=z */ __mul (&mpy, &mpz, &mpw, p); /* y*z =w */ __mpexp (&mpw, &mpp, p); /* e^w=pp */ __mp_dbl (&mpp, &res, p); /* converting into double precision */ } return res;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -