⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slowpow.c

📁 glibc 2.9,最新版的C语言库函数
💻 C
字号:
/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001, 2006 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//*************************************************************************//* MODULE_NAME:slowpow.c                                                 *//*                                                                       *//* FUNCTION:slowpow                                                      *//*                                                                       *//*FILES NEEDED:mpa.h                                                     *//*             mpa.c mpexp.c mplog.c halfulp.c                           *//*                                                                       *//* Given two IEEE double machine numbers y,x , routine  computes the     *//* correctly  rounded (to nearest) value of x^y. Result calculated  by   *//* multiplication (in halfulp.c) or if result isn't accurate enough      *//* then routine converts x and y into multi-precision doubles and        *//* recompute.                                                            *//*************************************************************************/#include "mpa.h"#include "math_private.h"void __mpexp (mp_no * x, mp_no * y, int p);void __mplog (mp_no * x, mp_no * y, int p);double ulog (double);double __halfulp (double x, double y);double__slowpow (double x, double y, double z){  double res, res1;  long double ldw, ldz, ldpp;  static const long double ldeps = 0x4.0p-96;  res = __halfulp (x, y);	/* halfulp() returns -10 or x^y             */  if (res >= 0)    return res;			/* if result was really computed by halfulp */  /*  else, if result was not really computed by halfulp */  /* Compute pow as long double, 106 bits */  ldz = __ieee754_logl ((long double) x);  ldw = (long double) y *ldz;  ldpp = __ieee754_expl (ldw);  res = (double) (ldpp + ldeps);  res1 = (double) (ldpp - ldeps);  if (res != res1)		/* if result still not accurate enough */    {				/* use mpa for higher persision.  */      mp_no mpx, mpy, mpz, mpw, mpp, mpr, mpr1;      static const mp_no eps = { -3, {1.0, 4.0} };      int p;      p = 10;			/*  p=precision 240 bits  */      __dbl_mp (x, &mpx, p);      __dbl_mp (y, &mpy, p);      __dbl_mp (z, &mpz, p);      __mplog (&mpx, &mpz, p);		/* log(x) = z   */      __mul (&mpy, &mpz, &mpw, p);	/*  y * z =w    */      __mpexp (&mpw, &mpp, p);		/*  e^w =pp     */      __add (&mpp, &eps, &mpr, p);	/*  pp+eps =r   */      __mp_dbl (&mpr, &res, p);      __sub (&mpp, &eps, &mpr1, p);	/*  pp -eps =r1 */      __mp_dbl (&mpr1, &res1, p);	/*  converting into double precision */      if (res == res1)	return res;      /* if we get here result wasn't calculated exactly, continue for         more exact calculation using 768 bits.  */      p = 32;      __dbl_mp (x, &mpx, p);      __dbl_mp (y, &mpy, p);      __dbl_mp (z, &mpz, p);      __mplog (&mpx, &mpz, p);		/* log(c)=z  */      __mul (&mpy, &mpz, &mpw, p);	/* y*z =w    */      __mpexp (&mpw, &mpp, p);		/* e^w=pp    */      __mp_dbl (&mpp, &res, p);		/* converting into double precision */    }  return res;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -