📄 mpa.c
字号:
for ( ; i<=p2; i++) Y[i] = ZERO; return;}/* add_magnitudes() adds the magnitudes of *x & *y assuming that *//* abs(*x) >= abs(*y) > 0. *//* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. *//* No guard digit is used. The result equals the exact sum, truncated. *//* *x & *y are left unchanged. */static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { long i,j,k; long p2 = p; EZ = EX; i=p2; j=p2+ EY - EX; k=p2+1; if (j<1) {__cpy(x,z,p); return; } else Z[k] = ZERO; for (; j>0; i--,j--) { Z[k] += X[i] + Y[j]; if (Z[k] >= RADIX) { Z[k] -= RADIX; Z[--k] = ONE; } else Z[--k] = ZERO; } for (; i>0; i--) { Z[k] += X[i]; if (Z[k] >= RADIX) { Z[k] -= RADIX; Z[--k] = ONE; } else Z[--k] = ZERO; } if (Z[1] == ZERO) { for (i=1; i<=p2; i++) Z[i] = Z[i+1]; } else EZ += ONE;}/* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that *//* abs(*x) > abs(*y) > 0. *//* The sign of the difference *z is undefined. x&y may overlap but not x&z *//* or y&z. One guard digit is used. The error is less than one ulp. *//* *x & *y are left unchanged. */static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { long i,j,k; long p2 = p; EZ = EX; if (EX == EY) { i=j=k=p2; Z[k] = Z[k+1] = ZERO; } else { j= EX - EY; if (j > p2) {__cpy(x,z,p); return; } else { i=p2; j=p2+1-j; k=p2; if (Y[j] > ZERO) { Z[k+1] = RADIX - Y[j--]; Z[k] = MONE; } else { Z[k+1] = ZERO; Z[k] = ZERO; j--;} } } for (; j>0; i--,j--) { Z[k] += (X[i] - Y[j]); if (Z[k] < ZERO) { Z[k] += RADIX; Z[--k] = MONE; } else Z[--k] = ZERO; } for (; i>0; i--) { Z[k] += X[i]; if (Z[k] < ZERO) { Z[k] += RADIX; Z[--k] = MONE; } else Z[--k] = ZERO; } for (i=1; Z[i] == ZERO; i++) ; EZ = EZ - i + 1; for (k=1; i <= p2+1; ) Z[k++] = Z[i++]; for (; k <= p2; ) Z[k++] = ZERO; return;}/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap *//* but not x&z or y&z. One guard digit is used. The error is less than *//* one ulp. *x & *y are left unchanged. */void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) { int n; if (X[0] == ZERO) {__cpy(y,z,p); return; } else if (Y[0] == ZERO) {__cpy(x,z,p); return; } if (X[0] == Y[0]) { if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; } } else { if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; } else Z[0] = ZERO; } return;}/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may *//* overlap but not x&z or y&z. One guard digit is used. The error is *//* less than one ulp. *x & *y are left unchanged. */void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) { int n; if (X[0] == ZERO) {__cpy(y,z,p); Z[0] = -Z[0]; return; } else if (Y[0] == ZERO) {__cpy(x,z,p); return; } if (X[0] != Y[0]) { if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; } } else { if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; } else Z[0] = ZERO; } return;}/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y *//* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is *//* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. *//* *x & *y are left unchanged. */void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) { long i, i1, i2, j, k, k2; long p2 = p; double u, zk, zk2; /* Is z=0? */ if (X[0]*Y[0]==ZERO) { Z[0]=ZERO; return; } /* Multiply, add and carry */ k2 = (p2<3) ? p2+p2 : p2+3; zk = Z[k2]=ZERO; for (k=k2; k>1; ) { if (k > p2) {i1=k-p2; i2=p2+1; } else {i1=1; i2=k; }#if 1 /* rearange this inner loop to allow the fmadd instructions to be independent and execute in parallel on processors that have dual symetrical FP pipelines. */ if (i1 < (i2-1)) { /* make sure we have at least 2 iterations */ if (((i2 - i1) & 1L) == 1L) { /* Handle the odd iterations case. */ zk2 = x->d[i2-1]*y->d[i1]; } else zk2 = zero.d; /* Do two multiply/adds per loop iteration, using independent accumulators; zk and zk2. */ for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2) { zk += x->d[i]*y->d[j]; zk2 += x->d[i+1]*y->d[j-1]; } zk += zk2; /* final sum. */ } else { /* Special case when iterations is 1. */ zk += x->d[i1]*y->d[i1]; }#else /* The orginal code. */ for (i=i1,j=i2-1; i<i2; i++,j--) zk += X[i]*Y[j];#endif u = (zk + CUTTER)-CUTTER; if (u > zk) u -= RADIX; Z[k] = zk - u; zk = u*RADIXI; --k; } Z[k] = zk; /* Is there a carry beyond the most significant digit? */ if (Z[1] == ZERO) { for (i=1; i<=p2; i++) Z[i]=Z[i+1]; EZ = EX + EY - 1; } else EZ = EX + EY; Z[0] = X[0] * Y[0]; return;}/* Invert a multiple precision number. Set *y = 1 / *x. *//* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, *//* 2.001*r**(1-p) for p>3. *//* *x=0 is not permissible. *x is left unchanged. */void __inv(const mp_no *x, mp_no *y, int p) { long i;#if 0 int l;#endif double t; mp_no z,w; static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}; const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}}; __cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p); t=ONE/t; __dbl_mp(t,y,p); EY -= EX; for (i=0; i<np1[p]; i++) { __cpy(y,&w,p); __mul(x,&w,y,p); __sub(&mptwo,y,&z,p); __mul(&w,&z,y,p); } return;}/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y *//* are left unchanged. x&y may overlap but not x&z or y&z. *//* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3 *//* and 3.001*r**(1-p) for p>3. *y=0 is not permissible. */void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) { mp_no w; if (X[0] == ZERO) Z[0] = ZERO; else {__inv(y,&w,p); __mul(x,&w,z,p);} return;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -