⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mpa.c

📁 glibc 2.9,最新版的C语言库函数
💻 C
📖 第 1 页 / 共 2 页
字号:
  for (   ; i<=p2; i++)     Y[i] = ZERO;  return;}/*  add_magnitudes() adds the magnitudes of *x & *y assuming that           *//*  abs(*x) >= abs(*y) > 0.                                                 *//* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. *//* No guard digit is used. The result equals the exact sum, truncated.      *//* *x & *y are left unchanged.                                              */static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {  long i,j,k;  long p2 = p;  EZ = EX;  i=p2;    j=p2+ EY - EX;    k=p2+1;  if (j<1)     {__cpy(x,z,p);  return; }  else   Z[k] = ZERO;  for (; j>0; i--,j--) {    Z[k] += X[i] + Y[j];    if (Z[k] >= RADIX) {      Z[k]  -= RADIX;      Z[--k] = ONE; }    else      Z[--k] = ZERO;  }  for (; i>0; i--) {    Z[k] += X[i];    if (Z[k] >= RADIX) {      Z[k]  -= RADIX;      Z[--k] = ONE; }    else      Z[--k] = ZERO;  }  if (Z[1] == ZERO) {    for (i=1; i<=p2; i++)    Z[i] = Z[i+1]; }  else   EZ += ONE;}/*  sub_magnitudes() subtracts the magnitudes of *x & *y assuming that      *//*  abs(*x) > abs(*y) > 0.                                                  *//* The sign of the difference *z is undefined. x&y may overlap but not x&z  *//* or y&z. One guard digit is used. The error is less than one ulp.         *//* *x & *y are left unchanged.                                              */static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {  long i,j,k;  long p2 = p;  EZ = EX;  if (EX == EY) {    i=j=k=p2;    Z[k] = Z[k+1] = ZERO; }  else {    j= EX - EY;    if (j > p2)  {__cpy(x,z,p);  return; }    else {      i=p2;   j=p2+1-j;   k=p2;      if (Y[j] > ZERO) {        Z[k+1] = RADIX - Y[j--];        Z[k]   = MONE; }      else {        Z[k+1] = ZERO;        Z[k]   = ZERO;   j--;}    }  }  for (; j>0; i--,j--) {    Z[k] += (X[i] - Y[j]);    if (Z[k] < ZERO) {      Z[k]  += RADIX;      Z[--k] = MONE; }    else      Z[--k] = ZERO;  }  for (; i>0; i--) {    Z[k] += X[i];    if (Z[k] < ZERO) {      Z[k]  += RADIX;      Z[--k] = MONE; }    else      Z[--k] = ZERO;  }  for (i=1; Z[i] == ZERO; i++) ;  EZ = EZ - i + 1;  for (k=1; i <= p2+1; )    Z[k++] = Z[i++];  for (; k <= p2; )    Z[k++] = ZERO;  return;}/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap  *//* but not x&z or y&z. One guard digit is used. The error is less than    *//* one ulp. *x & *y are left unchanged.                                   */void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) {  int n;  if      (X[0] == ZERO)     {__cpy(y,z,p);  return; }  else if (Y[0] == ZERO)     {__cpy(x,z,p);  return; }  if (X[0] == Y[0])   {    if (__acr(x,y,p) > 0)      {add_magnitudes(x,y,z,p);  Z[0] = X[0]; }    else                     {add_magnitudes(y,x,z,p);  Z[0] = Y[0]; }  }  else                       {    if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p);  Z[0] = X[0]; }    else if (n == -1)        {sub_magnitudes(y,x,z,p);  Z[0] = Y[0]; }    else                      Z[0] = ZERO;  }  return;}/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may *//* overlap but not x&z or y&z. One guard digit is used. The error is      *//* less than one ulp. *x & *y are left unchanged.                         */void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) {  int n;  if      (X[0] == ZERO)     {__cpy(y,z,p);  Z[0] = -Z[0];  return; }  else if (Y[0] == ZERO)     {__cpy(x,z,p);                 return; }  if (X[0] != Y[0])    {    if (__acr(x,y,p) > 0)      {add_magnitudes(x,y,z,p);  Z[0] =  X[0]; }    else                     {add_magnitudes(y,x,z,p);  Z[0] = -Y[0]; }  }  else                       {    if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p);  Z[0] =  X[0]; }    else if (n == -1)        {sub_magnitudes(y,x,z,p);  Z[0] = -Y[0]; }    else                      Z[0] = ZERO;  }  return;}/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y      *//* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is     *//* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp.   *//* *x & *y are left unchanged.                                             */void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {  long i, i1, i2, j, k, k2;  long p2 = p;  double u, zk, zk2;                      /* Is z=0? */  if (X[0]*Y[0]==ZERO)     { Z[0]=ZERO;  return; }                       /* Multiply, add and carry */  k2 = (p2<3) ? p2+p2 : p2+3;  zk = Z[k2]=ZERO;  for (k=k2; k>1; ) {    if (k > p2)  {i1=k-p2; i2=p2+1; }    else        {i1=1;   i2=k;   }#if 1    /* rearange this inner loop to allow the fmadd instructions to be       independent and execute in parallel on processors that have       dual symetrical FP pipelines.  */    if (i1 < (i2-1))    {	/* make sure we have at least 2 iterations */	if (((i2 - i1) & 1L) == 1L)	{                /* Handle the odd iterations case.  */		zk2 = x->d[i2-1]*y->d[i1];	}	else		zk2 = zero.d;	/* Do two multiply/adds per loop iteration, using independent           accumulators; zk and zk2.  */	for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2) 	{		zk += x->d[i]*y->d[j];		zk2 += x->d[i+1]*y->d[j-1];	}	zk += zk2; /* final sum.  */    }    else    {        /* Special case when iterations is 1.  */	zk += x->d[i1]*y->d[i1];    }#else    /* The orginal code.  */    for (i=i1,j=i2-1; i<i2; i++,j--)  zk += X[i]*Y[j];#endif    u = (zk + CUTTER)-CUTTER;    if  (u > zk)  u -= RADIX;    Z[k]  = zk - u;    zk = u*RADIXI;    --k;  }  Z[k] = zk;                 /* Is there a carry beyond the most significant digit? */  if (Z[1] == ZERO) {    for (i=1; i<=p2; i++)  Z[i]=Z[i+1];    EZ = EX + EY - 1; }  else    EZ = EX + EY;  Z[0] = X[0] * Y[0];  return;}/* Invert a multiple precision number. Set *y = 1 / *x.                     *//* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3,   *//* 2.001*r**(1-p) for p>3.                                                  *//* *x=0 is not permissible. *x is left unchanged.                           */void __inv(const mp_no *x, mp_no *y, int p) {  long i;#if 0  int l;#endif  double t;  mp_no z,w;  static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,                            4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};  const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};  __cpy(x,&z,p);  z.e=0;  __mp_dbl(&z,&t,p);  t=ONE/t;   __dbl_mp(t,y,p);    EY -= EX;  for (i=0; i<np1[p]; i++) {    __cpy(y,&w,p);    __mul(x,&w,y,p);    __sub(&mptwo,y,&z,p);    __mul(&w,&z,y,p);  }  return;}/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y *//* are left unchanged. x&y may overlap but not x&z or y&z.                   *//* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3     *//* and 3.001*r**(1-p) for p>3. *y=0 is not permissible.                      */void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) {  mp_no w;  if (X[0] == ZERO)    Z[0] = ZERO;  else                {__inv(y,&w,p);   __mul(x,&w,z,p);}  return;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -