⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mpa.c

📁 glibc 2.9,最新版的C语言库函数
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001, 2006 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//************************************************************************//*  MODULE_NAME: mpa.c                                                  *//*                                                                      *//*  FUNCTIONS:                                                          *//*               mcr                                                    *//*               acr                                                    *//*               cr                                                     *//*               cpy                                                    *//*               cpymn                                                  *//*               norm                                                   *//*               denorm                                                 *//*               mp_dbl                                                 *//*               dbl_mp                                                 *//*               add_magnitudes                                         *//*               sub_magnitudes                                         *//*               add                                                    *//*               sub                                                    *//*               mul                                                    *//*               inv                                                    *//*               dvd                                                    *//*                                                                      *//* Arithmetic functions for multiple precision numbers.                 *//* Relative errors are bounded                                          *//************************************************************************/#include "endian.h"#include "mpa.h"#include "mpa2.h"#include <sys/param.h>	/* For MIN() *//* mcr() compares the sizes of the mantissas of two multiple precision  *//* numbers. Mantissas are compared regardless of the signs of the       *//* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also     *//* disregarded.                                                         */static int mcr(const mp_no *x, const mp_no *y, int p) {  long i;  long p2 = p;  for (i=1; i<=p2; i++) {    if      (X[i] == Y[i])  continue;    else if (X[i] >  Y[i])  return  1;    else                    return -1; }  return 0;}/* acr() compares the absolute values of two multiple precision numbers */int __acr(const mp_no *x, const mp_no *y, int p) {  long i;  if      (X[0] == ZERO) {    if    (Y[0] == ZERO) i= 0;    else                 i=-1;  }  else if (Y[0] == ZERO) i= 1;  else {    if      (EX >  EY)   i= 1;    else if (EX <  EY)   i=-1;    else                 i= mcr(x,y,p);  }  return i;}/* cr90 compares the values of two multiple precision numbers           */int  __cr(const mp_no *x, const mp_no *y, int p) {  int i;  if      (X[0] > Y[0])  i= 1;  else if (X[0] < Y[0])  i=-1;  else if (X[0] < ZERO ) i= __acr(y,x,p);  else                   i= __acr(x,y,p);  return i;}/* Copy a multiple precision number. Set *y=*x. x=y is permissible.      */void __cpy(const mp_no *x, mp_no *y, int p) {  long i;  EY = EX;  for (i=0; i <= p; i++)    Y[i] = X[i];  return;}/* Copy a multiple precision number x of precision m into a *//* multiple precision number y of precision n. In case n>m, *//* the digits of y beyond the m'th are set to zero. In case *//* n<m, the digits of x beyond the n'th are ignored.        *//* x=y is permissible.                                      */void __cpymn(const mp_no *x, int m, mp_no *y, int n) {  long i,k;  long n2 = n;  long m2 = m;  EY = EX;     k=MIN(m2,n2);  for (i=0; i <= k; i++)    Y[i] = X[i];  for (   ; i <= n2; i++)    Y[i] = ZERO;  return;}/* Convert a multiple precision number *x into a double precision *//* number *y, normalized case  (|x| >= 2**(-1022))) */static void norm(const mp_no *x, double *y, int p){  #define R  radixi.d  long i;#if 0  int k;#endif  double a,c,u,v,z[5];  if (p<5) {    if      (p==1) c = X[1];    else if (p==2) c = X[1] + R* X[2];    else if (p==3) c = X[1] + R*(X[2]  +   R* X[3]);    else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]);  }  else {    for (a=ONE, z[1]=X[1]; z[1] < TWO23; )        {a *= TWO;   z[1] *= TWO; }    for (i=2; i<5; i++) {      z[i] = X[i]*a;      u = (z[i] + CUTTER)-CUTTER;      if  (u > z[i])  u -= RADIX;      z[i] -= u;      z[i-1] += u*RADIXI;    }    u = (z[3] + TWO71) - TWO71;    if (u > z[3])   u -= TWO19;    v = z[3]-u;    if (v == TWO18) {      if (z[4] == ZERO) {        for (i=5; i <= p; i++) {          if (X[i] == ZERO)   continue;          else                {z[3] += ONE;   break; }        }      }      else              z[3] += ONE;    }    c = (z[1] + R *(z[2] + R * z[3]))/a;  }  c *= X[0];  for (i=1; i<EX; i++)   c *= RADIX;  for (i=1; i>EX; i--)   c *= RADIXI;  *y = c;  return;#undef R}/* Convert a multiple precision number *x into a double precision *//* number *y, denormalized case  (|x| < 2**(-1022))) */static void denorm(const mp_no *x, double *y, int p){  long i,k;  long p2 = p;  double c,u,z[5];#if 0  double a,v;#endif#define R  radixi.d  if (EX<-44 || (EX==-44 && X[1]<TWO5))     { *y=ZERO; return; }  if      (p2==1) {    if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=ZERO;  z[3]=ZERO;  k=3;}    else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  z[3]=ZERO;  k=2;}    else              {z[1]=     TWO10;  z[2]=ZERO;  z[3]=X[1];  k=1;}  }  else if (p2==2) {    if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=X[2];  z[3]=ZERO;  k=3;}    else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  z[3]=X[2];  k=2;}    else              {z[1]=     TWO10;  z[2]=ZERO;  z[3]=X[1];  k=1;}  }  else {    if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=X[2];  k=3;}    else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  k=2;}    else              {z[1]=     TWO10;  z[2]=ZERO;  k=1;}    z[3] = X[k];  }  u = (z[3] + TWO57) - TWO57;  if  (u > z[3])   u -= TWO5;  if (u==z[3]) {    for (i=k+1; i <= p2; i++) {      if (X[i] == ZERO)   continue;      else {z[3] += ONE;   break; }    }  }  c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10);  *y = c*TWOM1032;  return;#undef R}/* Convert a multiple precision number *x into a double precision number *y. *//* The result is correctly rounded to the nearest/even. *x is left unchanged */void __mp_dbl(const mp_no *x, double *y, int p) {#if 0  int i,k;  double a,c,u,v,z[5];#endif  if (X[0] == ZERO)  {*y = ZERO;  return; }  if      (EX> -42)                 norm(x,y,p);  else if (EX==-42 && X[1]>=TWO10)  norm(x,y,p);  else                              denorm(x,y,p);}/* dbl_mp() converts a double precision number x into a multiple precision  *//* number *y. If the precision p is too small the result is truncated. x is *//* left unchanged.                                                          */void __dbl_mp(double x, mp_no *y, int p) {  long i,n;  long p2 = p;  double u;  /* Sign */  if      (x == ZERO)  {Y[0] = ZERO;  return; }  else if (x >  ZERO)   Y[0] = ONE;  else                 {Y[0] = MONE;  x=-x;   }  /* Exponent */  for (EY=ONE; x >= RADIX; EY += ONE)   x *= RADIXI;  for (      ; x <  ONE;   EY -= ONE)   x *= RADIX;  /* Digits */  n=MIN(p2,4);  for (i=1; i<=n; i++) {    u = (x + TWO52) - TWO52;    if (u>x)   u -= ONE;    Y[i] = u;     x -= u;    x *= RADIX; }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -