📄 memcmp.s
字号:
sub rRTN, rWORD3, rWORD4 blrL(b11):L(bx12): sub rRTN, rWORD1, rWORD2 blr .align 4 L(zeroLengthReturn):L(zeroLength): li rRTN, 0 blr cfi_adjust_cfa_offset(64) .align 4/* At this point we know the strings have different alignment and the compare length is at least 8 bytes. rBITDIF contains the low order 2 bits of rSTR1 and cr5 contains the result of the logical compare of rBITDIF to 0. If rBITDIF == 0 then rStr1 is word aligned and can perform the Wunaligned loop. Otherwise we know that rSTR1 is not aready word aligned yet. So we can force the string addresses to the next lower word boundary and special case this first word using shift left to eliminate bits preceeding the first byte. Since we want to join the normal (Wualigned) compare loop, starting at the second word, we need to adjust the length (rN) and special case the loop versioning for the first W. This insures that the loop count is correct and the first W (shifted) is in the expected resister pair. */#define rSHL r29 /* Unaligned shift left count. */#define rSHR r28 /* Unaligned shift right count. */#define rB r27 /* Left rotation temp for rWORD2. */#define rD r26 /* Left rotation temp for rWORD4. */#define rF r25 /* Left rotation temp for rWORD6. */#define rH r24 /* Left rotation temp for rWORD8. */#define rA r0 /* Right rotation temp for rWORD2. */#define rC r12 /* Right rotation temp for rWORD4. */#define rE r0 /* Right rotation temp for rWORD6. */#define rG r12 /* Right rotation temp for rWORD8. */L(unaligned): stw r29,40(r1) cfi_offset(r29,(40-64)) clrlwi rSHL, rSTR2, 30 stw r28,36(r1) cfi_offset(r28,(36-64)) beq cr5, L(Wunaligned) stw r27,32(r1) cfi_offset(r27,(32-64))/* Adjust the logical start of rSTR2 to compensate for the extra bits in the 1st rSTR1 W. */ sub r27, rSTR2, rBITDIF/* But do not attempt to address the W before that W that contains the actual start of rSTR2. */ clrrwi rSTR2, rSTR2, 2 stw r26,28(r1) cfi_offset(r26,(28-64))/* Compute the left/right shift counts for the unalign rSTR2, compensating for the logical (W aligned) start of rSTR1. */ clrlwi rSHL, r27, 30 clrrwi rSTR1, rSTR1, 2 stw r25,24(r1) cfi_offset(r25,(24-64)) slwi rSHL, rSHL, 3 cmplw cr5, r27, rSTR2 add rN, rN, rBITDIF slwi r11, rBITDIF, 3 stw r24,20(r1) cfi_offset(r24,(20-64)) subfic rSHR, rSHL, 32 srwi rTMP, rN, 4 /* Divide by 16 */ andi. rBITDIF, rN, 12 /* Get the W remainder *//* We normally need to load 2 Ws to start the unaligned rSTR2, but in this special case those bits may be discarded anyway. Also we must avoid loading a W where none of the bits are part of rSTR2 as this may cross a page boundary and cause a page fault. */ li rWORD8, 0 blt cr5, L(dus0) lwz rWORD8, 0(rSTR2) la rSTR2, 4(rSTR2) slw rWORD8, rWORD8, rSHLL(dus0): lwz rWORD1, 0(rSTR1) lwz rWORD2, 0(rSTR2) cmplwi cr1, rBITDIF, 8 cmplwi cr7, rN, 16 srw rG, rWORD2, rSHR clrlwi rN, rN, 30 beq L(duPs4) mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ or rWORD8, rG, rWORD8 bgt cr1, L(duPs3) beq cr1, L(duPs2)/* Remainder is 4 */ .align 4L(dusP1): slw rB, rWORD2, rSHL slw rWORD7, rWORD1, r11 slw rWORD8, rWORD8, r11 bge cr7, L(duP1e)/* At this point we exit early with the first word compare complete and remainder of 0 to 3 bytes. See L(du14) for details on how we handle the remaining bytes. */ cmplw cr5, rWORD7, rWORD8 slwi. rN, rN, 3 bne cr5, L(duLcr5) cmplw cr7, rN, rSHR beq L(duZeroReturn) li rA, 0 ble cr7, L(dutrim) lwz rWORD2, 4(rSTR2) srw rA, rWORD2, rSHR b L(dutrim)/* Remainder is 8 */ .align 4L(duPs2): slw rH, rWORD2, rSHL slw rWORD5, rWORD1, r11 slw rWORD6, rWORD8, r11 b L(duP2e)/* Remainder is 12 */ .align 4L(duPs3): slw rF, rWORD2, rSHL slw rWORD3, rWORD1, r11 slw rWORD4, rWORD8, r11 b L(duP3e)/* Count is a multiple of 16, remainder is 0 */ .align 4L(duPs4): mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ or rWORD8, rG, rWORD8 slw rD, rWORD2, rSHL slw rWORD1, rWORD1, r11 slw rWORD2, rWORD8, r11 b L(duP4e)/* At this point we know rSTR1 is word aligned and the compare length is at least 8 bytes. */ .align 4L(Wunaligned): stw r27,32(r1) cfi_offset(r27,(32-64)) clrrwi rSTR2, rSTR2, 2 stw r26,28(r1) cfi_offset(r26,(28-64)) srwi rTMP, rN, 4 /* Divide by 16 */ stw r25,24(r1) cfi_offset(r25,(24-64)) andi. rBITDIF, rN, 12 /* Get the W remainder */ stw r24,20(r1) cfi_offset(r24,(24-64)) slwi rSHL, rSHL, 3 lwz rWORD6, 0(rSTR2) lwzu rWORD8, 4(rSTR2) cmplwi cr1, rBITDIF, 8 cmplwi cr7, rN, 16 clrlwi rN, rN, 30 subfic rSHR, rSHL, 32 slw rH, rWORD6, rSHL beq L(duP4) mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ bgt cr1, L(duP3) beq cr1, L(duP2) /* Remainder is 4 */ .align 4L(duP1): srw rG, rWORD8, rSHR lwz rWORD7, 0(rSTR1) slw rB, rWORD8, rSHL or rWORD8, rG, rH blt cr7, L(duP1x)L(duP1e): lwz rWORD1, 4(rSTR1) lwz rWORD2, 4(rSTR2) cmplw cr5, rWORD7, rWORD8 srw rA, rWORD2, rSHR slw rD, rWORD2, rSHL or rWORD2, rA, rB lwz rWORD3, 8(rSTR1) lwz rWORD4, 8(rSTR2) cmplw cr0, rWORD1, rWORD2 srw rC, rWORD4, rSHR slw rF, rWORD4, rSHL bne cr5, L(duLcr5) or rWORD4, rC, rD lwz rWORD5, 12(rSTR1) lwz rWORD6, 12(rSTR2) cmplw cr1, rWORD3, rWORD4 srw rE, rWORD6, rSHR slw rH, rWORD6, rSHL bne cr0, L(duLcr0) or rWORD6, rE, rF cmplw cr6, rWORD5, rWORD6 b L(duLoop3) .align 4/* At this point we exit early with the first word compare complete and remainder of 0 to 3 bytes. See L(du14) for details on how we handle the remaining bytes. */L(duP1x): cmplw cr5, rWORD7, rWORD8 slwi. rN, rN, 3 bne cr5, L(duLcr5) cmplw cr7, rN, rSHR beq L(duZeroReturn) li rA, 0 ble cr7, L(dutrim) ld rWORD2, 8(rSTR2) srw rA, rWORD2, rSHR b L(dutrim)/* Remainder is 8 */ .align 4L(duP2): srw rE, rWORD8, rSHR lwz rWORD5, 0(rSTR1) or rWORD6, rE, rH slw rH, rWORD8, rSHLL(duP2e): lwz rWORD7, 4(rSTR1) lwz rWORD8, 4(rSTR2) cmplw cr6, rWORD5, rWORD6 srw rG, rWORD8, rSHR slw rB, rWORD8, rSHL or rWORD8, rG, rH blt cr7, L(duP2x) lwz rWORD1, 8(rSTR1) lwz rWORD2, 8(rSTR2) cmplw cr5, rWORD7, rWORD8 bne cr6, L(duLcr6) srw rA, rWORD2, rSHR slw rD, rWORD2, rSHL or rWORD2, rA, rB lwz rWORD3, 12(rSTR1) lwz rWORD4, 12(rSTR2) cmplw cr0, rWORD1, rWORD2 bne cr5, L(duLcr5) srw rC, rWORD4, rSHR slw rF, rWORD4, rSHL or rWORD4, rC, rD addi rSTR1, rSTR1, 4 addi rSTR2, rSTR2, 4 cmplw cr1, rWORD3, rWORD4 b L(duLoop2) .align 4L(duP2x): cmplw cr5, rWORD7, rWORD8 addi rSTR1, rSTR1, 4 addi rSTR2, rSTR2, 4 bne cr6, L(duLcr6) slwi. rN, rN, 3 bne cr5, L(duLcr5) cmplw cr7, rN, rSHR beq L(duZeroReturn) li rA, 0 ble cr7, L(dutrim) lwz rWORD2, 4(rSTR2) srw rA, rWORD2, rSHR b L(dutrim) /* Remainder is 12 */ .align 4L(duP3): srw rC, rWORD8, rSHR lwz rWORD3, 0(rSTR1) slw rF, rWORD8, rSHL or rWORD4, rC, rHL(duP3e): lwz rWORD5, 4(rSTR1) lwz rWORD6, 4(rSTR2) cmplw cr1, rWORD3, rWORD4 srw rE, rWORD6, rSHR slw rH, rWORD6, rSHL or rWORD6, rE, rF lwz rWORD7, 8(rSTR1) lwz rWORD8, 8(rSTR2) cmplw cr6, rWORD5, rWORD6 bne cr1, L(duLcr1) srw rG, rWORD8, rSHR slw rB, rWORD8, rSHL or rWORD8, rG, rH blt cr7, L(duP3x) lwz rWORD1, 12(rSTR1) lwz rWORD2, 12(rSTR2) cmplw cr5, rWORD7, rWORD8 bne cr6, L(duLcr6) srw rA, rWORD2, rSHR slw rD, rWORD2, rSHL or rWORD2, rA, rB addi rSTR1, rSTR1, 8 addi rSTR2, rSTR2, 8 cmplw cr0, rWORD1, rWORD2 b L(duLoop1) .align 4L(duP3x): addi rSTR1, rSTR1, 8 addi rSTR2, rSTR2, 8 bne cr1, L(duLcr1) cmplw cr5, rWORD7, rWORD8 bne cr6, L(duLcr6) slwi. rN, rN, 3 bne cr5, L(duLcr5) cmplw cr7, rN, rSHR beq L(duZeroReturn) li rA, 0 ble cr7, L(dutrim) lwz rWORD2, 4(rSTR2) srw rA, rWORD2, rSHR b L(dutrim) /* Count is a multiple of 16, remainder is 0 */ .align 4L(duP4): mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ srw rA, rWORD8, rSHR lwz rWORD1, 0(rSTR1) slw rD, rWORD8, rSHL or rWORD2, rA, rHL(duP4e): lwz rWORD3, 4(rSTR1) lwz rWORD4, 4(rSTR2) cmplw cr0, rWORD1, rWORD2 srw rC, rWORD4, rSHR slw rF, rWORD4, rSHL or rWORD4, rC, rD lwz rWORD5, 8(rSTR1) lwz rWORD6, 8(rSTR2) cmplw cr1, rWORD3, rWORD4 bne cr0, L(duLcr0) srw rE, rWORD6, rSHR slw rH, rWORD6, rSHL or rWORD6, rE, rF lwzu rWORD7, 12(rSTR1) lwzu rWORD8, 12(rSTR2) cmplw cr6, rWORD5, rWORD6 bne cr1, L(duLcr1) srw rG, rWORD8, rSHR slw rB, rWORD8, rSHL or rWORD8, rG, rH cmplw cr5, rWORD7, rWORD8 bdz- L(du24) /* Adjust CTR as we start with +4 *//* This is the primary loop */ .align 4L(duLoop): lwz rWORD1, 4(rSTR1) lwz rWORD2, 4(rSTR2) cmplw cr1, rWORD3, rWORD4 bne cr6, L(duLcr6) srw rA, rWORD2, rSHR slw rD, rWORD2, rSHL or rWORD2, rA, rBL(duLoop1): lwz rWORD3, 8(rSTR1) lwz rWORD4, 8(rSTR2) cmplw cr6, rWORD5, rWORD6 bne cr5, L(duLcr5) srw rC, rWORD4, rSHR slw rF, rWORD4, rSHL or rWORD4, rC, rDL(duLoop2): lwz rWORD5, 12(rSTR1) lwz rWORD6, 12(rSTR2) cmplw cr5, rWORD7, rWORD8 bne cr0, L(duLcr0) srw rE, rWORD6, rSHR slw rH, rWORD6, rSHL or rWORD6, rE, rFL(duLoop3): lwzu rWORD7, 16(rSTR1) lwzu rWORD8, 16(rSTR2) cmplw cr0, rWORD1, rWORD2 bne- cr1, L(duLcr1) srw rG, rWORD8, rSHR slw rB, rWORD8, rSHL or rWORD8, rG, rH bdnz+ L(duLoop) L(duL4): bne cr1, L(duLcr1) cmplw cr1, rWORD3, rWORD4 bne cr6, L(duLcr6) cmplw cr6, rWORD5, rWORD6 bne cr5, L(duLcr5) cmplw cr5, rWORD7, rWORD8L(du44): bne cr0, L(duLcr0)L(du34): bne cr1, L(duLcr1)L(du24): bne cr6, L(duLcr6)L(du14): slwi. rN, rN, 3 bne cr5, L(duLcr5)/* At this point we have a remainder of 1 to 3 bytes to compare. We use shift right to eliminate bits beyond the compare length. However it may not be safe to load rWORD2 which may be beyond the string length. So we compare the bit length of the remainder to the right shift count (rSHR). If the bit count is less than or equal we do not need to load rWORD2 (all significant bits are already in rB). */ cmplw cr7, rN, rSHR beq L(duZeroReturn) li rA, 0 ble cr7, L(dutrim) lwz rWORD2, 4(rSTR2) srw rA, rWORD2, rSHR .align 4L(dutrim): lwz rWORD1, 4(rSTR1) lwz r31,48(1) subfic rN, rN, 32 /* Shift count is 32 - (rN * 8). */ or rWORD2, rA, rB lwz r30,44(1) lwz r29,40(r1) srw rWORD1, rWORD1, rN srw rWORD2, rWORD2, rN lwz r28,36(r1) lwz r27,32(r1) cmplw rWORD1,rWORD2 li rRTN,0 beq L(dureturn26) li rRTN,1 bgt L(dureturn26) li rRTN,-1 b L(dureturn26) .align 4L(duLcr0): lwz r31,48(1) lwz r30,44(1) li rRTN, 1 bgt cr0, L(dureturn29) lwz r29,40(r1) lwz r28,36(r1) li rRTN, -1 b L(dureturn27) .align 4L(duLcr1): lwz r31,48(1) lwz r30,44(1) li rRTN, 1 bgt cr1, L(dureturn29) lwz r29,40(r1) lwz r28,36(r1) li rRTN, -1 b L(dureturn27) .align 4L(duLcr6): lwz r31,48(1) lwz r30,44(1) li rRTN, 1 bgt cr6, L(dureturn29) lwz r29,40(r1) lwz r28,36(r1) li rRTN, -1 b L(dureturn27) .align 4L(duLcr5): lwz r31,48(1) lwz r30,44(1) li rRTN, 1 bgt cr5, L(dureturn29) lwz r29,40(r1) lwz r28,36(r1) li rRTN, -1 b L(dureturn27) .align 3L(duZeroReturn): li rRTN,0 .align 4L(dureturn): lwz r31,48(1) lwz r30,44(1)L(dureturn29): lwz r29,40(r1) lwz r28,36(r1) L(dureturn27): lwz r27,32(r1)L(dureturn26): lwz r26,28(r1)L(dureturn25): lwz r25,24(r1) lwz r24,20(r1) lwz 1,0(1) blrEND (BP_SYM (memcmp))libc_hidden_builtin_def (memcmp)weak_alias (memcmp, bcmp)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -