📄 memcmp.s
字号:
/* Optimized strcmp implementation for PowerPC64. Copyright (C) 2003, 2006 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA. */#include <sysdep.h>#include <bp-sym.h>#include <bp-asm.h>/* int [r3] memcmp (const char *s1 [r3], const char *s2 [r4], size_t size [r5]) */ .machine power4EALIGN (BP_SYM(memcmp), 4, 0) CALL_MCOUNT#define rTMP r0#define rRTN r3#define rSTR1 r3 /* first string arg */#define rSTR2 r4 /* second string arg */#define rN r5 /* max string length */#define rWORD1 r6 /* current word in s1 */#define rWORD2 r7 /* current word in s2 */#define rWORD3 r8 /* next word in s1 */#define rWORD4 r9 /* next word in s2 */#define rWORD5 r10 /* next word in s1 */#define rWORD6 r11 /* next word in s2 */#define rBITDIF r12 /* bits that differ in s1 & s2 words */#define rWORD7 r30 /* next word in s1 */#define rWORD8 r31 /* next word in s2 */ xor rTMP, rSTR2, rSTR1 cmplwi cr6, rN, 0 cmplwi cr1, rN, 12 clrlwi. rTMP, rTMP, 30 clrlwi rBITDIF, rSTR1, 30 cmplwi cr5, rBITDIF, 0 beq- cr6, L(zeroLength) dcbt 0,rSTR1 dcbt 0,rSTR2/* If less than 8 bytes or not aligned, use the unaligned byte loop. */ blt cr1, L(bytealigned) stwu 1,-64(1) cfi_adjust_cfa_offset(64) stw r31,48(1) cfi_offset(31,(48-64)) stw r30,44(1) cfi_offset(30,(44-64)) bne L(unaligned)/* At this point we know both strings have the same alignment and the compare length is at least 8 bytes. rBITDIF contains the low order 2 bits of rSTR1 and cr5 contains the result of the logical compare of rBITDIF to 0. If rBITDIF == 0 then we are already word aligned and can perform the word aligned loop. Otherwise we know the two strings have the same alignment (but not yet word aligned). So we force the string addresses to the next lower word boundary and special case this first word using shift left to eliminate bits preceeding the first byte. Since we want to join the normal (word aligned) compare loop, starting at the second word, we need to adjust the length (rN) and special case the loop versioning for the first word. This insures that the loop count is correct and the first word (shifted) is in the expected register pair. */ .align 4L(samealignment): clrrwi rSTR1, rSTR1, 2 clrrwi rSTR2, rSTR2, 2 beq cr5, L(Waligned) add rN, rN, rBITDIF slwi r11, rBITDIF, 3 srwi rTMP, rN, 4 /* Divide by 16 */ andi. rBITDIF, rN, 12 /* Get the word remainder */ lwz rWORD1, 0(rSTR1) lwz rWORD2, 0(rSTR2) cmplwi cr1, rBITDIF, 8 cmplwi cr7, rN, 16 clrlwi rN, rN, 30 beq L(dPs4) mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ bgt cr1, L(dPs3) beq cr1, L(dPs2)/* Remainder is 4 */ .align 3L(dsP1): slw rWORD5, rWORD1, r11 slw rWORD6, rWORD2, r11 cmplw cr5, rWORD5, rWORD6 blt cr7, L(dP1x)/* Do something useful in this cycle since we have to branch anyway. */ lwz rWORD1, 4(rSTR1) lwz rWORD2, 4(rSTR2) cmplw cr0, rWORD1, rWORD2 b L(dP1e)/* Remainder is 8 */ .align 4L(dPs2): slw rWORD5, rWORD1, r11 slw rWORD6, rWORD2, r11 cmplw cr6, rWORD5, rWORD6 blt cr7, L(dP2x)/* Do something useful in this cycle since we have to branch anyway. */ lwz rWORD7, 4(rSTR1) lwz rWORD8, 4(rSTR2) cmplw cr5, rWORD7, rWORD8 b L(dP2e)/* Remainder is 12 */ .align 4L(dPs3): slw rWORD3, rWORD1, r11 slw rWORD4, rWORD2, r11 cmplw cr1, rWORD3, rWORD4 b L(dP3e)/* Count is a multiple of 16, remainder is 0 */ .align 4L(dPs4): mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ slw rWORD1, rWORD1, r11 slw rWORD2, rWORD2, r11 cmplw cr0, rWORD1, rWORD2 b L(dP4e)/* At this point we know both strings are word aligned and the compare length is at least 8 bytes. */ .align 4L(Waligned): andi. rBITDIF, rN, 12 /* Get the word remainder */ srwi rTMP, rN, 4 /* Divide by 16 */ cmplwi cr1, rBITDIF, 8 cmplwi cr7, rN, 16 clrlwi rN, rN, 30 beq L(dP4) bgt cr1, L(dP3) beq cr1, L(dP2) /* Remainder is 4 */ .align 4L(dP1): mtctr rTMP /* Power4 wants mtctr 1st in dispatch group *//* Normally we'd use rWORD7/rWORD8 here, but since we might exit early (8-15 byte compare), we want to use only volatile registers. This means we can avoid restoring non-volatile registers since we did not change any on the early exit path. The key here is the non-early exit path only cares about the condition code (cr5), not about which register pair was used. */ lwz rWORD5, 0(rSTR1) lwz rWORD6, 0(rSTR2) cmplw cr5, rWORD5, rWORD6 blt cr7, L(dP1x) lwz rWORD1, 4(rSTR1) lwz rWORD2, 4(rSTR2) cmplw cr0, rWORD1, rWORD2L(dP1e): lwz rWORD3, 8(rSTR1) lwz rWORD4, 8(rSTR2) cmplw cr1, rWORD3, rWORD4 lwz rWORD5, 12(rSTR1) lwz rWORD6, 12(rSTR2) cmplw cr6, rWORD5, rWORD6 bne cr5, L(dLcr5) bne cr0, L(dLcr0) lwzu rWORD7, 16(rSTR1) lwzu rWORD8, 16(rSTR2) bne cr1, L(dLcr1) cmplw cr5, rWORD7, rWORD8 bdnz L(dLoop) bne cr6, L(dLcr6) lwz r30,44(1) lwz r31,48(1) .align 3L(dP1x): slwi. r12, rN, 3 bne cr5, L(dLcr5) subfic rN, r12, 32 /* Shift count is 32 - (rN * 8). */ lwz 1,0(1) bne L(d00) li rRTN, 0 blr /* Remainder is 8 */ .align 4L(dP2): mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ lwz rWORD5, 0(rSTR1) lwz rWORD6, 0(rSTR2) cmplw cr6, rWORD5, rWORD6 blt cr7, L(dP2x) lwz rWORD7, 4(rSTR1) lwz rWORD8, 4(rSTR2) cmplw cr5, rWORD7, rWORD8L(dP2e): lwz rWORD1, 8(rSTR1) lwz rWORD2, 8(rSTR2) cmplw cr0, rWORD1, rWORD2 lwz rWORD3, 12(rSTR1) lwz rWORD4, 12(rSTR2) cmplw cr1, rWORD3, rWORD4 addi rSTR1, rSTR1, 4 addi rSTR2, rSTR2, 4 bne cr6, L(dLcr6) bne cr5, L(dLcr5) b L(dLoop2)/* Again we are on a early exit path (16-23 byte compare), we want to only use volatile registers and avoid restoring non-volatile registers. */ .align 4L(dP2x): lwz rWORD3, 4(rSTR1) lwz rWORD4, 4(rSTR2) cmplw cr5, rWORD3, rWORD4 slwi. r12, rN, 3 bne cr6, L(dLcr6) addi rSTR1, rSTR1, 4 addi rSTR2, rSTR2, 4 bne cr5, L(dLcr5) subfic rN, r12, 32 /* Shift count is 32 - (rN * 8). */ lwz 1,0(1) bne L(d00) li rRTN, 0 blr /* Remainder is 12 */ .align 4L(dP3): mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ lwz rWORD3, 0(rSTR1) lwz rWORD4, 0(rSTR2) cmplw cr1, rWORD3, rWORD4L(dP3e): lwz rWORD5, 4(rSTR1) lwz rWORD6, 4(rSTR2) cmplw cr6, rWORD5, rWORD6 blt cr7, L(dP3x) lwz rWORD7, 8(rSTR1) lwz rWORD8, 8(rSTR2) cmplw cr5, rWORD7, rWORD8 lwz rWORD1, 12(rSTR1) lwz rWORD2, 12(rSTR2) cmplw cr0, rWORD1, rWORD2 addi rSTR1, rSTR1, 8 addi rSTR2, rSTR2, 8 bne cr1, L(dLcr1) bne cr6, L(dLcr6) b L(dLoop1)/* Again we are on a early exit path (24-31 byte compare), we want to only use volatile registers and avoid restoring non-volatile registers. */ .align 4L(dP3x): lwz rWORD1, 8(rSTR1) lwz rWORD2, 8(rSTR2) cmplw cr5, rWORD1, rWORD2 slwi. r12, rN, 3 bne cr1, L(dLcr1) addi rSTR1, rSTR1, 8 addi rSTR2, rSTR2, 8 bne cr6, L(dLcr6) subfic rN, r12, 32 /* Shift count is 32 - (rN * 8). */ bne cr5, L(dLcr5) lwz 1,0(1) bne L(d00) li rRTN, 0 blr /* Count is a multiple of 16, remainder is 0 */ .align 4L(dP4): mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ lwz rWORD1, 0(rSTR1) lwz rWORD2, 0(rSTR2) cmplw cr0, rWORD1, rWORD2L(dP4e): lwz rWORD3, 4(rSTR1) lwz rWORD4, 4(rSTR2) cmplw cr1, rWORD3, rWORD4 lwz rWORD5, 8(rSTR1) lwz rWORD6, 8(rSTR2) cmplw cr6, rWORD5, rWORD6 lwzu rWORD7, 12(rSTR1) lwzu rWORD8, 12(rSTR2) cmplw cr5, rWORD7, rWORD8 bne cr0, L(dLcr0) bne cr1, L(dLcr1) bdz- L(d24) /* Adjust CTR as we start with +4 *//* This is the primary loop */ .align 4L(dLoop): lwz rWORD1, 4(rSTR1) lwz rWORD2, 4(rSTR2) cmplw cr1, rWORD3, rWORD4 bne cr6, L(dLcr6)L(dLoop1): lwz rWORD3, 8(rSTR1) lwz rWORD4, 8(rSTR2) cmplw cr6, rWORD5, rWORD6 bne cr5, L(dLcr5)L(dLoop2): lwz rWORD5, 12(rSTR1) lwz rWORD6, 12(rSTR2) cmplw cr5, rWORD7, rWORD8 bne cr0, L(dLcr0)L(dLoop3): lwzu rWORD7, 16(rSTR1) lwzu rWORD8, 16(rSTR2) bne- cr1, L(dLcr1) cmplw cr0, rWORD1, rWORD2 bdnz+ L(dLoop) L(dL4): cmplw cr1, rWORD3, rWORD4 bne cr6, L(dLcr6) cmplw cr6, rWORD5, rWORD6 bne cr5, L(dLcr5) cmplw cr5, rWORD7, rWORD8L(d44): bne cr0, L(dLcr0)L(d34): bne cr1, L(dLcr1)L(d24): bne cr6, L(dLcr6)L(d14): slwi. r12, rN, 3 bne cr5, L(dLcr5) L(d04): lwz r30,44(1) lwz r31,48(1) lwz 1,0(1) subfic rN, r12, 32 /* Shift count is 32 - (rN * 8). */ beq L(zeroLength)/* At this point we have a remainder of 1 to 3 bytes to compare. Since we are aligned it is safe to load the whole word, and use shift right to eliminate bits beyond the compare length. */ L(d00): lwz rWORD1, 4(rSTR1) lwz rWORD2, 4(rSTR2) srw rWORD1, rWORD1, rN srw rWORD2, rWORD2, rN cmplw rWORD1,rWORD2 li rRTN,0 beqlr li rRTN,1 bgtlr li rRTN,-1 blr .align 4L(dLcr0): lwz r30,44(1) lwz r31,48(1) li rRTN, 1 lwz 1,0(1) bgtlr cr0 li rRTN, -1 blr .align 4L(dLcr1): lwz r30,44(1) lwz r31,48(1) li rRTN, 1 lwz 1,0(1) bgtlr cr1 li rRTN, -1 blr .align 4L(dLcr6): lwz r30,44(1) lwz r31,48(1) li rRTN, 1 lwz 1,0(1) bgtlr cr6 li rRTN, -1 blr .align 4L(dLcr5): lwz r30,44(1) lwz r31,48(1)L(dLcr5x): li rRTN, 1 lwz 1,0(1) bgtlr cr5 li rRTN, -1 blr .align 4L(bytealigned): cfi_adjust_cfa_offset(-64) mtctr rN /* Power4 wants mtctr 1st in dispatch group *//* We need to prime this loop. This loop is swing modulo scheduled to avoid pipe delays. The dependent instruction latencies (load to compare to conditional branch) is 2 to 3 cycles. In this loop each dispatch group ends in a branch and takes 1 cycle. Effectively the first iteration of the loop only serves to load operands and branches based on compares are delayed until the next loop. So we must precondition some registers and condition codes so that we don't exit the loop early on the first iteration. */ lbz rWORD1, 0(rSTR1) lbz rWORD2, 0(rSTR2) bdz- L(b11) cmplw cr0, rWORD1, rWORD2 lbz rWORD3, 1(rSTR1) lbz rWORD4, 1(rSTR2) bdz- L(b12) cmplw cr1, rWORD3, rWORD4 lbzu rWORD5, 2(rSTR1) lbzu rWORD6, 2(rSTR2) bdz- L(b13) .align 4L(bLoop): lbzu rWORD1, 1(rSTR1) lbzu rWORD2, 1(rSTR2) bne- cr0, L(bLcr0) cmplw cr6, rWORD5, rWORD6 bdz- L(b3i) lbzu rWORD3, 1(rSTR1) lbzu rWORD4, 1(rSTR2) bne- cr1, L(bLcr1) cmplw cr0, rWORD1, rWORD2 bdz- L(b2i) lbzu rWORD5, 1(rSTR1) lbzu rWORD6, 1(rSTR2) bne- cr6, L(bLcr6) cmplw cr1, rWORD3, rWORD4 bdnz+ L(bLoop) /* We speculatively loading bytes before we have tested the previous bytes. But we must avoid overrunning the length (in the ctr) to prevent these speculative loads from causing a segfault. In this case the loop will exit early (before the all pending bytes are tested. In this case we must complete the pending operations before returning. */L(b1i): bne- cr0, L(bLcr0) bne- cr1, L(bLcr1) b L(bx56) .align 4L(b2i): bne- cr6, L(bLcr6) bne- cr0, L(bLcr0) b L(bx34) .align 4L(b3i): bne- cr1, L(bLcr1) bne- cr6, L(bLcr6) b L(bx12) .align 4L(bLcr0): li rRTN, 1 bgtlr cr0 li rRTN, -1 blrL(bLcr1): li rRTN, 1 bgtlr cr1 li rRTN, -1 blrL(bLcr6): li rRTN, 1 bgtlr cr6 li rRTN, -1 blrL(b13): bne- cr0, L(bx12) bne- cr1, L(bx34)L(bx56): sub rRTN, rWORD5, rWORD6 blr nopL(b12): bne- cr0, L(bx12)L(bx34):
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -