⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 libm_sincos.s

📁 glibc 2.9,最新版的C语言库函数
💻 S
📖 第 1 页 / 共 2 页
字号:
.file "libm_sincos.s"// Copyright (c) 2002 - 2005, Intel Corporation// All rights reserved.//// Contributed 2002 by the Intel Numerics Group, Intel Corporation//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at// http://www.intel.com/software/products/opensource/libraries/num.htm.//// History//==============================================================// 02/01/02 Initial version// 02/18/02 Large arguments processing routine is excluded.//          External interface entry points are added// 03/13/02 Corrected restore of predicate registers// 03/19/02 Added stack unwind around call to __libm_cis_large// 09/05/02 Work range is widened by reduction strengthen (3 parts of Pi/16)// 02/10/03 Reordered header: .section, .global, .proc, .align// 08/08/03 Improved performance// 02/11/04 cis is moved to the separate file.// 03/31/05 Reformatted delimiters between data tables//// API//==============================================================// 1) void sincos(double, double*s, double*c)// 2) __libm_sincos - internal LIBM function, that accepts//    argument in f8 and returns cosine through f8, sine through f9//// Overview of operation//==============================================================//// Step 1// ======// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k  where k=4//    divide x by pi/2^k.//    Multiply by 2^k/pi.//    nfloat = Round result to integer (round-to-nearest)//// r = x -  nfloat * pi/2^k//    Do this as ((((x -  nfloat * HIGH(pi/2^k))) -//                        nfloat * LOW(pi/2^k)) -//                        nfloat * LOWEST(pi/2^k) for increased accuracy.//    pi/2^k is stored as two numbers that when added make pi/2^k.//       pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)//    HIGH and LOW parts are rounded to zero values,//    and LOWEST is rounded to nearest one.//// x = (nfloat * pi/2^k) + r//    r is small enough that we can use a polynomial approximation//    and is referred to as the reduced argument.//// Step 3// ======// Take the unreduced part and remove the multiples of 2pi.// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits////    nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)//    N * 2^(k+1)//    nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k//    nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k//    nfloat * pi/2^k = N2pi + M * pi/2^k////// Sin(x) = Sin((nfloat * pi/2^k) + r)//        = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)////          Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)//                               = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)//                               = Sin(Mpi/2^k)////          Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)//                               = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)//                               = Cos(Mpi/2^k)//// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)////// Step 4// ======// 0 <= M < 2^(k+1)// There are 2^(k+1) Sin entries in a table.// There are 2^(k+1) Cos entries in a table.//// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.////// Step 5// ======// Calculate Cos(r) and Sin(r) by polynomial approximation.//// Cos(r) = 1 + r^2 q1  + r^4 q2 + r^6 q3 + ... = Series for Cos// Sin(r) = r + r^3 p1  + r^5 p2 + r^7 p3 + ... = Series for Sin//// and the coefficients q1, q2, ... and p1, p2, ... are stored in a table////// Calculate// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)//// as follows////    S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)//    rsq = r*r//////    P = p1 + r^2p2 + r^4p3 + r^6p4//    Q = q1 + r^2q2 + r^4q3 + r^6q4////       rcub = r * rsq//       Sin(r) = r + rcub * P//              = r + r^3p1  + r^5p2 + r^7p3 + r^9p4 + ... = Sin(r)////            The coefficients are not exactly these values, but almost.////            p1 = -1/6  = -1/3!//            p2 = 1/120 =  1/5!//            p3 = -1/5040 = -1/7!//            p4 = 1/362889 = 1/9!////       P =  r + rcub * P////    Answer = S[m] Cos(r) + C[m] P////       Cos(r) = 1 + rsq Q//       Cos(r) = 1 + r^2 Q//       Cos(r) = 1 + r^2 (q1 + r^2q2 + r^4q3 + r^6q4)//       Cos(r) = 1 + r^2q1 + r^4q2 + r^6q3 + r^8q4 + ...////       S[m] Cos(r) = S[m](1 + rsq Q)//       S[m] Cos(r) = S[m] + S[m] rsq Q//       S[m] Cos(r) = S[m] + s_rsq Q//       Q           = S[m] + s_rsq Q//// Then,////    Answer = Q + C[m] P// Registers used//==============================================================// general input registers:// r14 -> r39// predicate registers used:// p6 -> p14//// floating-point registers used// f9 -> f15// f32 -> f67// Assembly macros//==============================================================cis_Arg                     = f8cis_Sin_res                 = f9cis_Cos_res                 = f8cis_NORM_f8                 = f10cis_W                       = f11cis_int_Nfloat              = f12cis_Nfloat                  = f13cis_r                       = f14cis_rsq                     = f15cis_rcub                    = f32cis_Inv_Pi_by_16            = f33cis_Pi_by_16_hi             = f34cis_Pi_by_16_lo             = f35cis_Inv_Pi_by_64            = f36cis_Pi_by_16_lowest         = f37cis_r_exact                 = f38cis_P1                      = f39cis_Q1                      = f40cis_P2                      = f41cis_Q2                      = f42cis_P3                      = f43cis_Q3                      = f44cis_P4                      = f45cis_Q4                      = f46cis_P_temp1                 = f47cis_P_temp2                 = f48cis_Q_temp1                 = f49cis_Q_temp2                 = f50cis_P                       = f51cis_SIG_INV_PI_BY_16_2TO61  = f52cis_RSHF_2TO61              = f53cis_RSHF                    = f54cis_2TOM61                  = f55cis_NFLOAT                  = f56cis_W_2TO61_RSH             = f57cis_tmp                     = f58cis_Sm_sin                  = f59cis_Cm_sin                  = f60cis_Sm_cos                  = f61cis_Cm_cos                  = f62cis_srsq_sin                = f63cis_srsq_cos                = f64cis_Q_sin                   = f65cis_Q_cos                   = f66cis_Q                       = f67/////////////////////////////////////////////////////////////cis_pResSin                 = r33cis_pResCos                 = r34cis_GR_sig_inv_pi_by_16     = r14cis_GR_rshf_2to61           = r15cis_GR_rshf                 = r16cis_GR_exp_2tom61           = r17cis_GR_n                    = r18cis_GR_n_sin                = r19cis_exp_limit               = r20cis_r_signexp               = r21cis_AD_1                    = r22cis_r_sincos                = r23cis_r_exp                   = r24cis_r_17_ones               = r25cis_GR_m_sin                = r26cis_GR_32m_sin              = r26cis_GR_n_cos                = r27cis_GR_m_cos                = r28cis_GR_32m_cos              = r28cis_AD_2_sin                = r29cis_AD_2_cos                = r30cis_gr_tmp                  = r31GR_SAVE_B0                  = r35GR_SAVE_GP                  = r36rB0_SAVED                   = r37GR_SAVE_PFS                 = r38GR_SAVE_PR                  = r39RODATA.align 16// Pi/16 partsLOCAL_OBJECT_START(double_cis_pi)   data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part   data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part   data8 0xA4093822299F31D0, 0x00003F7A // pi/16 3rd partLOCAL_OBJECT_END(double_cis_pi)// Coefficients for polynomialsLOCAL_OBJECT_START(double_cis_pq_k4)   data8 0x3EC71C963717C63A // P4   data8 0x3EF9FFBA8F191AE6 // Q4   data8 0xBF2A01A00F4E11A8 // P3   data8 0xBF56C16C05AC77BF // Q3   data8 0x3F8111111110F167 // P2   data8 0x3FA555555554DD45 // Q2   data8 0xBFC5555555555555 // P1   data8 0xBFDFFFFFFFFFFFFC // Q1LOCAL_OBJECT_END(double_cis_pq_k4)// Sincos table (S[m], C[m])LOCAL_OBJECT_START(double_sin_cos_beta_k4)data8 0x0000000000000000 , 0x00000000 // sin( 0 pi/16)  S0data8 0x8000000000000000 , 0x00003fff // cos( 0 pi/16)  C0//data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin( 1 pi/16)  S1data8 0xfb14be7fbae58157 , 0x00003ffe // cos( 1 pi/16)  C1//data8 0xc3ef1535754b168e , 0x00003ffd // sin( 2 pi/16)  S2data8 0xec835e79946a3146 , 0x00003ffe // cos( 2 pi/16)  C2//data8 0x8e39d9cd73464364 , 0x00003ffe // sin( 3 pi/16)  S3data8 0xd4db3148750d181a , 0x00003ffe // cos( 3 pi/16)  C3//data8 0xb504f333f9de6484 , 0x00003ffe // sin( 4 pi/16)  S4data8 0xb504f333f9de6484 , 0x00003ffe // cos( 4 pi/16)  C4//data8 0xd4db3148750d181a , 0x00003ffe // sin( 5 pi/16)  C3data8 0x8e39d9cd73464364 , 0x00003ffe // cos( 5 pi/16)  S3//data8 0xec835e79946a3146 , 0x00003ffe // sin( 6 pi/16)  C2data8 0xc3ef1535754b168e , 0x00003ffd // cos( 6 pi/16)  S2//data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 7 pi/16)  C1data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos( 7 pi/16)  S1//data8 0x8000000000000000 , 0x00003fff // sin( 8 pi/16)  C0data8 0x0000000000000000 , 0x00000000 // cos( 8 pi/16)  S0//data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 9 pi/16)  C1data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos( 9 pi/16)  -S1//data8 0xec835e79946a3146 , 0x00003ffe // sin(10 pi/16)  C2data8 0xc3ef1535754b168e , 0x0000bffd // cos(10 pi/16)  -S2//data8 0xd4db3148750d181a , 0x00003ffe // sin(11 pi/16)  C3data8 0x8e39d9cd73464364 , 0x0000bffe // cos(11 pi/16)  -S3//data8 0xb504f333f9de6484 , 0x00003ffe // sin(12 pi/16)  S4data8 0xb504f333f9de6484 , 0x0000bffe // cos(12 pi/16)  -S4//data8 0x8e39d9cd73464364 , 0x00003ffe // sin(13 pi/16) S3data8 0xd4db3148750d181a , 0x0000bffe // cos(13 pi/16) -C3//data8 0xc3ef1535754b168e , 0x00003ffd // sin(14 pi/16) S2data8 0xec835e79946a3146 , 0x0000bffe // cos(14 pi/16) -C2//data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin(15 pi/16) S1data8 0xfb14be7fbae58157 , 0x0000bffe // cos(15 pi/16) -C1//data8 0x0000000000000000 , 0x00000000 // sin(16 pi/16) S0data8 0x8000000000000000 , 0x0000bfff // cos(16 pi/16) -C0//data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(17 pi/16) -S1data8 0xfb14be7fbae58157 , 0x0000bffe // cos(17 pi/16) -C1//data8 0xc3ef1535754b168e , 0x0000bffd // sin(18 pi/16) -S2data8 0xec835e79946a3146 , 0x0000bffe // cos(18 pi/16) -C2//data8 0x8e39d9cd73464364 , 0x0000bffe // sin(19 pi/16) -S3data8 0xd4db3148750d181a , 0x0000bffe // cos(19 pi/16) -C3//data8 0xb504f333f9de6484 , 0x0000bffe // sin(20 pi/16) -S4data8 0xb504f333f9de6484 , 0x0000bffe // cos(20 pi/16) -S4//data8 0xd4db3148750d181a , 0x0000bffe // sin(21 pi/16) -C3data8 0x8e39d9cd73464364 , 0x0000bffe // cos(21 pi/16) -S3//data8 0xec835e79946a3146 , 0x0000bffe // sin(22 pi/16) -C2data8 0xc3ef1535754b168e , 0x0000bffd // cos(22 pi/16) -S2//data8 0xfb14be7fbae58157 , 0x0000bffe // sin(23 pi/16) -C1data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos(23 pi/16) -S1//data8 0x8000000000000000 , 0x0000bfff // sin(24 pi/16) -C0data8 0x0000000000000000 , 0x00000000 // cos(24 pi/16) S0//data8 0xfb14be7fbae58157 , 0x0000bffe // sin(25 pi/16) -C1data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos(25 pi/16) S1//data8 0xec835e79946a3146 , 0x0000bffe // sin(26 pi/16) -C2data8 0xc3ef1535754b168e , 0x00003ffd // cos(26 pi/16) S2//data8 0xd4db3148750d181a , 0x0000bffe // sin(27 pi/16) -C3data8 0x8e39d9cd73464364 , 0x00003ffe // cos(27 pi/16) S3//data8 0xb504f333f9de6484 , 0x0000bffe // sin(28 pi/16) -S4data8 0xb504f333f9de6484 , 0x00003ffe // cos(28 pi/16) S4//data8 0x8e39d9cd73464364 , 0x0000bffe // sin(29 pi/16) -S3data8 0xd4db3148750d181a , 0x00003ffe // cos(29 pi/16) C3//data8 0xc3ef1535754b168e , 0x0000bffd // sin(30 pi/16) -S2data8 0xec835e79946a3146 , 0x00003ffe // cos(30 pi/16) C2

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -