📄 s_tan.s
字号:
.file "tancot.s"// Copyright (c) 2000 - 2003, Intel Corporation// All rights reserved.//// Contributed 2000 by the Intel Numerics Group, Intel Corporation//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. //// Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at // http://www.intel.com/software/products/opensource/libraries/num.htm.//// History//==============================================================// 02/02/00 Initial version// 04/04/00 Unwind support added// 12/27/00 Improved speed// 02/21/01 Updated to call tanl// 05/30/02 Added cot// 02/10/03 Reordered header: .section, .global, .proc, .align//// API//==============================================================// double tan(double x);// double cot(double x);//// Overview of operation//==============================================================// If the input value in radians is |x| >= 1.xxxxx 2^10 call the// older slower version.//// The new algorithm is used when |x| <= 1.xxxxx 2^9.//// Represent the input X as Nfloat * pi/2 + r// where r can be negative and |r| <= pi/4//// tan_W = x * 2/pi// Nfloat = round_int(tan_W)//// tan_r = x - Nfloat * (pi/2)_hi// a) tan_r = tan_r - Nfloat * (pi/2)_lo (for tan)// b) tan_r = Nfloat * (pi/2)_lo - tan_r (for cot)//// We have two paths: p8, when Nfloat is even and p9. when Nfloat is odd.// a) for tan: p8: tan(X) = tan(r)// p9: tan(X) = -cot(r)// b) for cot: p9: cot(X) = cot(r)// p8: cot(X) = -tan(r)//// Each is evaluated as a series. The p9 path requires 1/r.//// The coefficients used in the series are stored in a table as// are the pi constants.//// Registers used//==============================================================//// predicate registers used:// p6-12//// floating-point registers used:// f10-15, f32-106// f8, input//// general registers used// r14-26, r32-39//// Assembly macros//==============================================================TAN_INV_PI_BY_2_2TO64 = f10TAN_RSHF_2TO64 = f11TAN_2TOM64 = f12TAN_RSHF = f13TAN_W_2TO64_RSH = f14TAN_NFLOAT = f15tan_Inv_Pi_by_2 = f32tan_Pi_by_2_hi = f33tan_Pi_by_2_lo = f34tan_P0 = f35tan_P1 = f36tan_P2 = f37tan_P3 = f38tan_P4 = f39tan_P5 = f40tan_P6 = f41tan_P7 = f42tan_P8 = f43tan_P9 = f44tan_P10 = f45tan_P11 = f46tan_P12 = f47tan_P13 = f48tan_P14 = f49tan_P15 = f50tan_Q0 = f51tan_Q1 = f52tan_Q2 = f53tan_Q3 = f54tan_Q4 = f55tan_Q5 = f56tan_Q6 = f57tan_Q7 = f58tan_Q8 = f59tan_Q9 = f60tan_Q10 = f61tan_r = f62tan_rsq = f63tan_rcube = f64tan_v18 = f65tan_v16 = f66tan_v17 = f67tan_v12 = f68tan_v13 = f69tan_v7 = f70tan_v8 = f71tan_v4 = f72tan_v5 = f73tan_v15 = f74tan_v11 = f75tan_v14 = f76tan_v3 = f77tan_v6 = f78tan_v10 = f79tan_v2 = f80tan_v9 = f81tan_v1 = f82tan_int_Nfloat = f83tan_Nfloat = f84tan_NORM_f8 = f85tan_W = f86tan_y0 = f87tan_d = f88tan_y1 = f89tan_dsq = f90tan_y2 = f91tan_d4 = f92tan_inv_r = f93tan_z1 = f94tan_z2 = f95tan_z3 = f96tan_z4 = f97tan_z5 = f98tan_z6 = f99tan_z7 = f100tan_z8 = f101tan_z9 = f102tan_z10 = f103tan_z11 = f104tan_z12 = f105arg_copy = f106/////////////////////////////////////////////////////////////tan_GR_sig_inv_pi_by_2 = r14tan_GR_rshf_2to64 = r15tan_GR_exp_2tom64 = r16tan_GR_n = r17tan_GR_rshf = r18tan_AD = r19tan_GR_10009 = r20tan_GR_17_ones = r21tan_GR_N_odd_even = r22tan_GR_N = r23tan_signexp = r24tan_exp = r25tan_ADQ = r26GR_SAVE_B0 = r33GR_SAVE_PFS = r34GR_SAVE_GP = r35GR_Parameter_X = r36GR_Parameter_Y = r37GR_Parameter_RESULT = r38GR_Parameter_Tag = r39RODATA.align 16LOCAL_OBJECT_START(double_tan_constants) data8 0xC90FDAA22168C234, 0x00003FFF // pi/2 hi data8 0xBEEA54580DDEA0E1 // P14 data8 0x3ED3021ACE749A59 // P15 data8 0xBEF312BD91DC8DA1 // P12 data8 0x3EFAE9AFC14C5119 // P13 data8 0x3F2F342BF411E769 // P8 data8 0x3F1A60FC9F3B0227 // P9 data8 0x3EFF246E78E5E45B // P10 data8 0x3F01D9D2E782875C // P11 data8 0x3F8226E34C4499B6 // P4 data8 0x3F6D6D3F12C236AC // P5 data8 0x3F57DA1146DCFD8B // P6 data8 0x3F43576410FE3D75 // P7 data8 0x3FD5555555555555 // P0 data8 0x3FC11111111111C2 // P1 data8 0x3FABA1BA1BA0E850 // P2 data8 0x3F9664F4886725A7 // P3LOCAL_OBJECT_END(double_tan_constants)LOCAL_OBJECT_START(double_Q_tan_constants) data8 0xC4C6628B80DC1CD1, 0x00003FBF // pi/2 lo data8 0x3E223A73BA576E48 // Q8 data8 0x3DF54AD8D1F2CA43 // Q9 data8 0x3EF66A8EE529A6AA // Q4 data8 0x3EC2281050410EE6 // Q5 data8 0x3E8D6BB992CC3CF5 // Q6 data8 0x3E57F88DE34832E4 // Q7 data8 0x3FD5555555555555 // Q0 data8 0x3F96C16C16C16DB8 // Q1 data8 0x3F61566ABBFFB489 // Q2 data8 0x3F2BBD77945C1733 // Q3 data8 0x3D927FB33E2B0E04 // Q10LOCAL_OBJECT_END(double_Q_tan_constants).section .text////////////////////////////////////////////////////////LOCAL_LIBM_ENTRY(cot)// The initial fnorm will take any unmasked faults and// normalize any single/double unorms{ .mlx cmp.eq p12, p11 = r0, r0 // set p12=1, p11=0 for cot movl tan_GR_sig_inv_pi_by_2 = 0xA2F9836E4E44152A // significand of 2/pi}{ .mlx addl tan_AD = @ltoff(double_tan_constants), gp movl tan_GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+63+1)};;{ .mlx mov tan_GR_exp_2tom64 = 0xffff-64 // exponent of scaling factor 2^-64 movl tan_GR_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift}{ .mfb ld8 tan_AD = [tan_AD] fnorm.s0 tan_NORM_f8 = f8 br.cond.sptk COMMON_PATH};;LOCAL_LIBM_END(cot)GLOBAL_IEEE754_ENTRY(tan)// The initial fnorm will take any unmasked faults and// normalize any single/double unorms{ .mlx cmp.eq p11, p12 = r0, r0 // set p11=1, p12=0 for tan movl tan_GR_sig_inv_pi_by_2 = 0xA2F9836E4E44152A // significand of 2/pi}{ .mlx addl tan_AD = @ltoff(double_tan_constants), gp movl tan_GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+63+1)};;{ .mlx mov tan_GR_exp_2tom64 = 0xffff-64 // exponent of scaling factor 2^-64 movl tan_GR_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift}{ .mfi ld8 tan_AD = [tan_AD] fnorm.s0 tan_NORM_f8 = f8 nop.i 0};;// Common path for both tan and cotCOMMON_PATH:// Form two constants we need// 2/pi * 2^1 * 2^63, scaled by 2^64 since we just loaded the significand// 1.1000...000 * 2^(63+63+1) to right shift int(W) into the significand{ .mmi setf.sig TAN_INV_PI_BY_2_2TO64 = tan_GR_sig_inv_pi_by_2 setf.d TAN_RSHF_2TO64 = tan_GR_rshf_2to64 mov tan_GR_17_ones = 0x1ffff ;;}// Form another constant// 2^-64 for scaling Nfloat// 1.1000...000 * 2^63, the right shift constant{ .mmf setf.exp TAN_2TOM64 = tan_GR_exp_2tom64 adds tan_ADQ = double_Q_tan_constants - double_tan_constants, tan_AD(p11) fclass.m.unc p6,p0 = f8, 0x07 // Test for x=0 (tan)};;// Form another constant// 2^-64 for scaling Nfloat// 1.1000...000 * 2^63, the right shift constant{ .mmf setf.d TAN_RSHF = tan_GR_rshf ldfe tan_Pi_by_2_hi = [tan_AD],16 fclass.m.unc p7,p0 = f8, 0x23 // Test for x=inf};;{ .mfb ldfe tan_Pi_by_2_lo = [tan_ADQ],16 fclass.m.unc p8,p0 = f8, 0xc3 // Test for x=nan(p6) br.ret.spnt b0 ;; // Exit for x=0 (tan only)}{ .mfi ldfpd tan_P14,tan_P15 = [tan_AD],16(p7) frcpa.s0 f8,p9=f0,f0 // Set qnan indef if x=inf mov tan_GR_10009 = 0x10009}{ .mib ldfpd tan_Q8,tan_Q9 = [tan_ADQ],16 nop.i 999(p7) br.ret.spnt b0 ;; // Exit for x=inf}{ .mfi ldfpd tan_P12,tan_P13 = [tan_AD],16(p12) fclass.m.unc p6,p0 = f8, 0x07 // Test for x=0 (cot) nop.i 999}{ .mfb ldfpd tan_Q4,tan_Q5 = [tan_ADQ],16(p8) fma.d.s0 f8=f8,f1,f8 // Set qnan if x=nan(p8) br.ret.spnt b0 ;; // Exit for x=nan}{ .mmf getf.exp tan_signexp = tan_NORM_f8 ldfpd tan_P8,tan_P9 = [tan_AD],16 fmerge.s arg_copy = f8, f8 ;; // Save input for error call}// Multiply x by scaled 2/pi and add large const to shift integer part of W to// rightmost bits of significand{ .mmf alloc r32=ar.pfs,0,4,4,0 ldfpd tan_Q6,tan_Q7 = [tan_ADQ],16 fma.s1 TAN_W_2TO64_RSH = tan_NORM_f8,TAN_INV_PI_BY_2_2TO64,TAN_RSHF_2TO64};;{ .mmf ldfpd tan_P10,tan_P11 = [tan_AD],16 and tan_exp = tan_GR_17_ones, tan_signexp(p6) frcpa.s0 f8, p0 = f1, f8 ;; // cot(+-0) = +-Inf}// p7 is true if we must call DBX TAN// p7 is true if f8 exp is > 0x10009 (which includes all ones// NAN or inf){ .mmb ldfpd tan_Q0,tan_Q1 = [tan_ADQ],16 cmp.ge.unc p7,p0 = tan_exp,tan_GR_10009(p7) br.cond.spnt TAN_DBX ;;}{ .mmb ldfpd tan_P4,tan_P5 = [tan_AD],16(p6) mov GR_Parameter_Tag = 226 // (cot)(p6) br.cond.spnt __libm_error_region ;; // call error support if cot(+-0)}{ .mmi ldfpd tan_Q2,tan_Q3 = [tan_ADQ],16 nop.m 999 nop.i 999 ;;}// TAN_NFLOAT = Round_Int_Nearest(tan_W){ .mfi ldfpd tan_P6,tan_P7 = [tan_AD],16 fms.s1 TAN_NFLOAT = TAN_W_2TO64_RSH,TAN_2TOM64,TAN_RSHF nop.i 999 ;;}{ .mfi ldfd tan_Q10 = [tan_ADQ] nop.f 999 nop.i 999 ;;}{ .mfi ldfpd tan_P0,tan_P1 = [tan_AD],16 nop.f 999 nop.i 999 ;;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -