📄 e_cosh.s
字号:
.file "cosh.s"// Copyright (c) 2000 - 2005, Intel Corporation// All rights reserved.//// Contributed 2000 by the Intel Numerics Group, Intel Corporation//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at// http://www.intel.com/software/products/opensource/libraries/num.htm.//// History//==============================================================// 02/02/00 Initial version// 04/04/00 Unwind support added// 08/15/00 Bundle added after call to __libm_error_support to properly// set [the previously overwritten] GR_Parameter_RESULT.// 05/07/01 Reworked to improve speed of all paths// 05/20/02 Cleaned up namespace and sf0 syntax// 11/15/02 Improved speed with new algorithm// 03/31/05 Reformatted delimiters between data tables// API//==============================================================// double cosh(double)// Overview of operation//==============================================================// Case 1: 0 < |x| < 0.25// Evaluate cosh(x) by a 12th order polynomial// Care is take for the order of multiplication; and A2 is not exactly 1/4!,// A3 is not exactly 1/6!, etc.// cosh(x) = 1 + (A1*x^2 + A2*x^4 + A3*x^6 + A4*x^8 + A5*x^10 + A6*x^12)//// Case 2: 0.25 < |x| < 710.47586// Algorithm is based on the identity cosh(x) = ( exp(x) + exp(-x) ) / 2.// The algorithm for exp is described as below. There are a number of// economies from evaluating both exp(x) and exp(-x). Although we// are evaluating both quantities, only where the quantities diverge do we// duplicate the computations. The basic algorithm for exp(x) is described// below.//// Take the input x. w is "how many log2/128 in x?"// w = x * 128/log2// n = int(w)// x = n log2/128 + r + delta// n = 128M + index_1 + 2^4 index_2// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)// Construct 2^M// Get 2^(index_1/128) from table_1;// Get 2^(index_2/8) from table_2;// Calculate exp(r) by 5th order polynomial// r = x - n (log2/128)_high// delta = - n (log2/128)_low// Calculate exp(delta) as 1 + delta// Special values//==============================================================// cosh(+0) = 1.0// cosh(-0) = 1.0// cosh(+qnan) = +qnan// cosh(-qnan) = -qnan// cosh(+snan) = +qnan// cosh(-snan) = -qnan// cosh(-inf) = +inf// cosh(+inf) = +inf// Overflow and Underflow//=======================// cosh(x) = largest double normal when// x = 710.47586 = 0x408633ce8fb9f87d//// There is no underflow.// Registers used//==============================================================// Floating Point registers used:// f8, input, output// f6 -> f15, f32 -> f61// General registers used:// r14 -> r40// Predicate registers used:// p6 -> p15// Assembly macros//==============================================================rRshf = r14rN_neg = r14rAD_TB1 = r15rAD_TB2 = r16rAD_P = r17rN = r18rIndex_1 = r19rIndex_2_16 = r20rM = r21rBiased_M = r21rSig_inv_ln2 = r22rIndex_1_neg = r22rExp_bias = r23rExp_bias_minus_1 = r23rExp_mask = r24rTmp = r24rGt_ln = r24rIndex_2_16_neg = r24rM_neg = r25rBiased_M_neg = r25rRshf_2to56 = r26rAD_T1_neg = r26rExp_2tom56 = r28rAD_T2_neg = r28rAD_T1 = r29rAD_T2 = r30rSignexp_x = r31rExp_x = r31GR_SAVE_B0 = r33GR_SAVE_PFS = r34GR_SAVE_GP = r35GR_SAVE_SP = r36GR_Parameter_X = r37GR_Parameter_Y = r38GR_Parameter_RESULT = r39GR_Parameter_TAG = r40FR_X = f10FR_Y = f1FR_RESULT = f8fRSHF_2TO56 = f6fINV_LN2_2TO63 = f7fW_2TO56_RSH = f9f2TOM56 = f11fP5 = f12fP4 = f13fP3 = f14fP2 = f15fLn2_by_128_hi = f33fLn2_by_128_lo = f34fRSHF = f35fNfloat = f36fNormX = f37fR = f38fF = f39fRsq = f40f2M = f41fS1 = f42fT1 = f42fS2 = f43fT2 = f43fS = f43fWre_urm_f8 = f44fAbsX = f44fMIN_DBL_OFLOW_ARG = f45fMAX_DBL_NORM_ARG = f46fXsq = f47fX4 = f48fGt_pln = f49fTmp = f49fP54 = f50fP5432 = f50fP32 = f51fP = f52fP54_neg = f53fP5432_neg = f53fP32_neg = f54fP_neg = f55fF_neg = f56f2M_neg = f57fS1_neg = f58fT1_neg = f58fS2_neg = f59fT2_neg = f59fS_neg = f59fExp = f60fExp_neg = f61fA6 = f50fA65 = f50fA6543 = f50fA654321 = f50fA5 = f51fA4 = f52fA43 = f52fA3 = f53fA2 = f54fA21 = f54fA1 = f55// Data tables//==============================================================RODATA.align 16// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************// double-extended 1/ln(2)// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88// 3fff b8aa 3b29 5c17 f0bc// For speed the significand will be loaded directly with a movl and setf.sig// and the exponent will be bias+63 instead of bias+0. Thus subsequent// computations need to scale appropriately.// The constant 128/ln(2) is needed for the computation of w. This is also// obtained by scaling the computations.//// Two shifting constants are loaded directly with movl and setf.d.// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)// This constant is added to x*1/ln2 to shift the integer part of// x*128/ln2 into the rightmost bits of the significand.// The result of this fma is fW_2TO56_RSH.// 2. fRSHF = 1.1000..00 * 2^(63)// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give// the integer part of w, n, as a floating-point number.// The result of this fms is fNfloat.LOCAL_OBJECT_START(exp_table_1)data8 0x408633ce8fb9f87e // smallest dbl overflow argdata8 0x408633ce8fb9f87d // largest dbl arg to give normal dbl resultdata8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hidata8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo//// Table 1 is 2^(index_1/128) where// index_1 goes from 0 to 15//data8 0x8000000000000000 , 0x00003FFFdata8 0x80B1ED4FD999AB6C , 0x00003FFFdata8 0x8164D1F3BC030773 , 0x00003FFFdata8 0x8218AF4373FC25EC , 0x00003FFFdata8 0x82CD8698AC2BA1D7 , 0x00003FFFdata8 0x8383594EEFB6EE37 , 0x00003FFFdata8 0x843A28C3ACDE4046 , 0x00003FFFdata8 0x84F1F656379C1A29 , 0x00003FFFdata8 0x85AAC367CC487B15 , 0x00003FFFdata8 0x8664915B923FBA04 , 0x00003FFFdata8 0x871F61969E8D1010 , 0x00003FFFdata8 0x87DB357FF698D792 , 0x00003FFFdata8 0x88980E8092DA8527 , 0x00003FFFdata8 0x8955EE03618E5FDD , 0x00003FFFdata8 0x8A14D575496EFD9A , 0x00003FFFdata8 0x8AD4C6452C728924 , 0x00003FFFLOCAL_OBJECT_END(exp_table_1)// Table 2 is 2^(index_1/8) where// index_2 goes from 0 to 7LOCAL_OBJECT_START(exp_table_2)data8 0x8000000000000000 , 0x00003FFFdata8 0x8B95C1E3EA8BD6E7 , 0x00003FFFdata8 0x9837F0518DB8A96F , 0x00003FFFdata8 0xA5FED6A9B15138EA , 0x00003FFFdata8 0xB504F333F9DE6484 , 0x00003FFFdata8 0xC5672A115506DADD , 0x00003FFFdata8 0xD744FCCAD69D6AF4 , 0x00003FFFdata8 0xEAC0C6E7DD24392F , 0x00003FFFLOCAL_OBJECT_END(exp_table_2)LOCAL_OBJECT_START(exp_p_table)data8 0x3f8111116da21757 //P5data8 0x3fa55555d787761c //P4data8 0x3fc5555555555414 //P3data8 0x3fdffffffffffd6a //P2LOCAL_OBJECT_END(exp_p_table)LOCAL_OBJECT_START(cosh_p_table)data8 0x8FA02AC65BCBD5BC, 0x00003FE2 // A6data8 0xD00D00D1021D7370, 0x00003FEF // A4data8 0xAAAAAAAAAAAAAB80, 0x00003FFA // A2data8 0x93F27740C0C2F1CC, 0x00003FE9 // A5data8 0xB60B60B60B4FE884, 0x00003FF5 // A3data8 0x8000000000000000, 0x00003FFE // A1LOCAL_OBJECT_END(cosh_p_table).section .textGLOBAL_IEEE754_ENTRY(cosh){ .mlx getf.exp rSignexp_x = f8 // Must recompute if x unorm movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2}{ .mlx addl rAD_TB1 = @ltoff(exp_table_1), gp movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56)};;{ .mfi ld8 rAD_TB1 = [rAD_TB1] fclass.m p6,p0 = f8,0x0b // Test for x=unorm mov rExp_mask = 0x1ffff}{ .mfi mov rExp_bias = 0xffff fnorm.s1 fNormX = f8 mov rExp_2tom56 = 0xffff-56};;// Form two constants we need// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand{ .mfi setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63 fclass.m p8,p0 = f8,0x07 // Test for x=0 nop.i 999}{ .mlx setf.d fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56) movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift};;{ .mfi ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_NORM_ARG = [rAD_TB1],16 fclass.m p10,p0 = f8,0x1e3 // Test for x=inf, nan, NaT nop.i 0}{ .mfb setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat nop.f 0(p6) br.cond.spnt COSH_UNORM // Branch if x=unorm};;COSH_COMMON:{ .mfi ldfe fLn2_by_128_hi = [rAD_TB1],16 nop.f 0 nop.i 0}{ .mfb setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63(p8) fma.d.s0 f8 = f1,f1,f0 // quick exit for x=0(p8) br.ret.spnt b0};;{ .mfi ldfe fLn2_by_128_lo = [rAD_TB1],16 nop.f 0 nop.i 0}{ .mfb and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x(p10) fma.d.s0 f8 = f8,f8,f0 // Result if x=inf, nan, NaT(p10) br.ret.spnt b0 // quick exit for x=inf, nan, NaT};;// After that last load rAD_TB1 points to the beginning of table 1{ .mfi nop.m 0 fcmp.eq.s0 p6,p0 = f8, f0 // Dummy to set D sub rExp_x = rExp_x, rExp_bias // True exponent of x};;{ .mfi nop.m 0 fmerge.s fAbsX = f0, fNormX // Form |x| nop.i 0}{ .mfb cmp.gt p7, p0 = -2, rExp_x // Test |x| < 2^(-2) fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path(p7) br.cond.spnt COSH_SMALL // Branch if 0 < |x| < 2^-2};;// W = X * Inv_log2_by_128// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.{ .mfi add rAD_P = 0x180, rAD_TB1 fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56 add rAD_TB2 = 0x100, rAD_TB1};;// Divide arguments into the following categories:// Certain Safe - 0.25 <= |x| <= MAX_DBL_NORM_ARG// Possible Overflow p14 - MAX_DBL_NORM_ARG < |x| < MIN_DBL_OFLOW_ARG// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= |x| < +inf//// If the input is really a double arg, then there will never be// "Possible Overflow" arguments.//
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -