📄 e_exp.s
字号:
.file "exp.s"// Copyright (c) 2000 - 2005, Intel Corporation// All rights reserved.//// Contributed 2000 by the Intel Numerics Group, Intel Corporation//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at// http://www.intel.com/software/products/opensource/libraries/num.htm.//// History//==============================================================// 2/02/00 Initial version// 3/07/00 exp(inf) = inf but now does NOT call error support// exp(-inf) = 0 but now does NOT call error support// 4/04/00 Unwind support added// 8/15/00 Bundle added after call to __libm_error_support to properly// set [the previously overwritten] GR_Parameter_RESULT.// 11/30/00 Reworked to shorten main path, widen main path to include all// args in normal range, and add quick exit for 0, nan, inf.// 12/05/00 Loaded constants earlier with setf to save 2 cycles.// 02/05/02 Corrected uninitialize predicate in POSSIBLE_UNDERFLOW path// 05/20/02 Cleaned up namespace and sf0 syntax// 09/07/02 Force inexact flag// 11/15/02 Split underflow path into zero/nonzero; eliminated fma in main path// 05/30/03 Set inexact flag on unmasked overflow/underflow// 03/31/05 Reformatted delimiters between data tables// API//==============================================================// double exp(double)// Overview of operation//==============================================================// Take the input x. w is "how many log2/128 in x?"// w = x * 128/log2// n = int(w)// x = n log2/128 + r + delta// n = 128M + index_1 + 2^4 index_2// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)// Construct 2^M// Get 2^(index_1/128) from table_1;// Get 2^(index_2/8) from table_2;// Calculate exp(r) by 5th order polynomial// r = x - n (log2/128)_high// delta = - n (log2/128)_low// Calculate exp(delta) as 1 + delta// Special values//==============================================================// exp(+0) = 1.0// exp(-0) = 1.0// exp(+qnan) = +qnan// exp(-qnan) = -qnan// exp(+snan) = +qnan// exp(-snan) = -qnan// exp(-inf) = +0// exp(+inf) = +inf// Overflow and Underflow//=======================// exp(x) = largest double normal when// x = 709.7827 = 0x40862e42fefa39ef// exp(x) = smallest double normal when// x = -708.396 = 0xc086232bdd7abcd2// exp(x) = largest round-to-nearest single zero when// x = -745.1332 = 0xc0874910d52d3052// Registers used//==============================================================// Floating Point registers used:// f8, input, output// f6 -> f15, f32 -> f49// General registers used:// r14 -> r40// Predicate registers used:// p6 -> p15// Assembly macros//==============================================================rRshf = r14rAD_TB1 = r15rAD_T1 = r15rAD_TB2 = r16rAD_T2 = r16rAD_P = r17rN = r18rIndex_1 = r19rIndex_2_16 = r20rM = r21rBiased_M = r21rIndex_1_16 = r21rSig_inv_ln2 = r22rExp_bias = r23rExp_mask = r24rTmp = r25rRshf_2to56 = r26rGt_ln = r27rExp_2tom56 = r28GR_SAVE_B0 = r33GR_SAVE_PFS = r34GR_SAVE_GP = r35GR_SAVE_SP = r36GR_Parameter_X = r37GR_Parameter_Y = r38GR_Parameter_RESULT = r39GR_Parameter_TAG = r40FR_X = f10FR_Y = f1FR_RESULT = f8fRSHF_2TO56 = f6fINV_LN2_2TO63 = f7fW_2TO56_RSH = f9f2TOM56 = f11fP5 = f12fP54 = f12fP5432 = f12fP4 = f13fP3 = f14fP32 = f14fP2 = f15fP = f15fLn2_by_128_hi = f33fLn2_by_128_lo = f34fRSHF = f35fNfloat = f36fNormX = f37fR = f38fF = f39fRsq = f40f2M = f41fS1 = f42fT1 = f42fS2 = f43fT2 = f43fS = f43fWre_urm_f8 = f44fFtz_urm_f8 = f44fMIN_DBL_OFLOW_ARG = f45fMAX_DBL_ZERO_ARG = f46fMAX_DBL_NORM_ARG = f47fMIN_DBL_NORM_ARG = f48fGt_pln = f49fTmp = f49// Data tables//==============================================================RODATA.align 16// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************// double-extended 1/ln(2)// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88// 3fff b8aa 3b29 5c17 f0bc// For speed the significand will be loaded directly with a movl and setf.sig// and the exponent will be bias+63 instead of bias+0. Thus subsequent// computations need to scale appropriately.// The constant 128/ln(2) is needed for the computation of w. This is also// obtained by scaling the computations.//// Two shifting constants are loaded directly with movl and setf.d.// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)// This constant is added to x*1/ln2 to shift the integer part of// x*128/ln2 into the rightmost bits of the significand.// The result of this fma is fW_2TO56_RSH.// 2. fRSHF = 1.1000..00 * 2^(63)// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give// the integer part of w, n, as a floating-point number.// The result of this fms is fNfloat.LOCAL_OBJECT_START(exp_table_1)data8 0x40862e42fefa39f0 // smallest dbl overflow arg, +709.7827data8 0xc0874910d52d3052 // largest arg for rnd-to-nearest 0 result, -745.133data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result, +709.7827data8 0xc086232bdd7abcd2 // smallest dbl arg to give normal dbl result, -708.396data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hidata8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo//// Table 1 is 2^(index_1/128) where// index_1 goes from 0 to 15//data8 0x8000000000000000 , 0x00003FFFdata8 0x80B1ED4FD999AB6C , 0x00003FFFdata8 0x8164D1F3BC030773 , 0x00003FFFdata8 0x8218AF4373FC25EC , 0x00003FFFdata8 0x82CD8698AC2BA1D7 , 0x00003FFFdata8 0x8383594EEFB6EE37 , 0x00003FFFdata8 0x843A28C3ACDE4046 , 0x00003FFFdata8 0x84F1F656379C1A29 , 0x00003FFFdata8 0x85AAC367CC487B15 , 0x00003FFFdata8 0x8664915B923FBA04 , 0x00003FFFdata8 0x871F61969E8D1010 , 0x00003FFFdata8 0x87DB357FF698D792 , 0x00003FFFdata8 0x88980E8092DA8527 , 0x00003FFFdata8 0x8955EE03618E5FDD , 0x00003FFFdata8 0x8A14D575496EFD9A , 0x00003FFFdata8 0x8AD4C6452C728924 , 0x00003FFFLOCAL_OBJECT_END(exp_table_1)// Table 2 is 2^(index_1/8) where// index_2 goes from 0 to 7LOCAL_OBJECT_START(exp_table_2)data8 0x8000000000000000 , 0x00003FFFdata8 0x8B95C1E3EA8BD6E7 , 0x00003FFFdata8 0x9837F0518DB8A96F , 0x00003FFFdata8 0xA5FED6A9B15138EA , 0x00003FFFdata8 0xB504F333F9DE6484 , 0x00003FFFdata8 0xC5672A115506DADD , 0x00003FFFdata8 0xD744FCCAD69D6AF4 , 0x00003FFFdata8 0xEAC0C6E7DD24392F , 0x00003FFFLOCAL_OBJECT_END(exp_table_2)LOCAL_OBJECT_START(exp_p_table)data8 0x3f8111116da21757 //P5data8 0x3fa55555d787761c //P4data8 0x3fc5555555555414 //P3data8 0x3fdffffffffffd6a //P2LOCAL_OBJECT_END(exp_p_table).section .textGLOBAL_IEEE754_ENTRY(exp){ .mlx nop.m 0 movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2}{ .mlx addl rAD_TB1 = @ltoff(exp_table_1), gp movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56)};;{ .mfi ld8 rAD_TB1 = [rAD_TB1] fclass.m p8,p0 = f8,0x07 // Test for x=0 mov rExp_mask = 0x1ffff}{ .mfi mov rExp_bias = 0xffff fnorm.s1 fNormX = f8 mov rExp_2tom56 = 0xffff-56};;// Form two constants we need// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand{ .mfi setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63 fclass.m p9,p0 = f8,0x22 // Test for x=-inf nop.i 0}{ .mlx setf.d fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56) movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift};;{ .mfi ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_ZERO_ARG = [rAD_TB1],16 fclass.m p10,p0 = f8,0x1e1 // Test for x=+inf, nan, NaT nop.i 0}{ .mfb setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat(p9) fma.d.s0 f8 = f0,f0,f0 // quick exit for x=-inf(p9) br.ret.spnt b0};;{ .mfi ldfpd fMAX_DBL_NORM_ARG, fMIN_DBL_NORM_ARG = [rAD_TB1],16 nop.f 0 nop.i 0}{ .mfb setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63(p8) fma.d.s0 f8 = f1,f1,f0 // quick exit for x=0(p8) br.ret.spnt b0};;{ .mfb ldfe fLn2_by_128_hi = [rAD_TB1],16(p10) fma.d.s0 f8 = f8,f8,f0 // Result if x=+inf, nan, NaT(p10) br.ret.spnt b0 // quick exit for x=+inf, nan, NaT};;{ .mfi ldfe fLn2_by_128_lo = [rAD_TB1],16 fcmp.eq.s0 p6,p0 = f8, f0 // Dummy to set D nop.i 0};;// After that last load, rAD_TB1 points to the beginning of table 1// W = X * Inv_log2_by_128// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.{ .mfi nop.m 0 fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56 nop.i 0};;// Divide arguments into the following categories:// Certain Underflow p11 - -inf < x <= MAX_DBL_ZERO_ARG// Possible Underflow p13 - MAX_DBL_ZERO_ARG < x < MIN_DBL_NORM_ARG// Certain Safe - MIN_DBL_NORM_ARG <= x <= MAX_DBL_NORM_ARG// Possible Overflow p14 - MAX_DBL_NORM_ARG < x < MIN_DBL_OFLOW_ARG// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= x < +inf//// If the input is really a double arg, then there will never be// "Possible Overflow" arguments.//{ .mfi add rAD_TB2 = 0x100, rAD_TB1 fcmp.ge.s1 p15,p0 = fNormX,fMIN_DBL_OFLOW_ARG nop.i 0};;{ .mfi add rAD_P = 0x80, rAD_TB2 fcmp.le.s1 p11,p0 = fNormX,fMAX_DBL_ZERO_ARG nop.i 0};;{ .mfb ldfpd fP5, fP4 = [rAD_P] ,16 fcmp.gt.s1 p14,p0 = fNormX,fMAX_DBL_NORM_ARG(p15) br.cond.spnt EXP_CERTAIN_OVERFLOW}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -