📄 s_expm1.s
字号:
.file "exp_m1.s"// Copyright (c) 2000 - 2005, Intel Corporation// All rights reserved.//// Contributed 2000 by the Intel Numerics Group, Intel Corporation//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at// http://www.intel.com/software/products/opensource/libraries/num.htm.//// History//==============================================================// 02/02/00 Initial Version// 04/04/00 Unwind support added// 08/15/00 Bundle added after call to __libm_error_support to properly// set [the previously overwritten] GR_Parameter_RESULT.// 07/07/01 Improved speed of all paths// 05/20/02 Cleaned up namespace and sf0 syntax// 11/20/02 Improved speed, algorithm based on exp// 03/31/05 Reformatted delimiters between data tables// API//==============================================================// double expm1(double)// Overview of operation//==============================================================// 1. Inputs of Nan, Inf, Zero, NatVal handled with special paths//// 2. |x| < 2^-60// Result = x, computed by x + x*x to handle appropriate flags and rounding//// 3. 2^-60 <= |x| < 2^-2// Result determined by 13th order Taylor series polynomial// expm1f(x) = x + Q2*x^2 + ... + Q13*x^13//// 4. x < -48.0// Here we know result is essentially -1 + eps, where eps only affects// rounded result. Set I.//// 5. x >= 709.7827// Result overflows. Set I, O, and call error support//// 6. 2^-2 <= x < 709.7827 or -48.0 <= x < -2^-2 // This is the main path. The algorithm is described below:// Take the input x. w is "how many log2/128 in x?"// w = x * 128/log2// n = int(w)// x = n log2/128 + r + delta// n = 128M + index_1 + 2^4 index_2// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)// Construct 2^M// Get 2^(index_1/128) from table_1;// Get 2^(index_2/8) from table_2;// Calculate exp(r) by series by 5th order polynomial// r = x - n (log2/128)_high// delta = - n (log2/128)_low// Calculate exp(delta) as 1 + delta// Special values//==============================================================// expm1(+0) = +0.0// expm1(-0) = -0.0// expm1(+qnan) = +qnan// expm1(-qnan) = -qnan// expm1(+snan) = +qnan// expm1(-snan) = -qnan// expm1(-inf) = -1.0// expm1(+inf) = +inf// Overflow and Underflow//=======================// expm1(x) = largest double normal when// x = 709.7827 = 40862e42fefa39ef//// Underflow is handled as described in case 2 above.// Registers used//==============================================================// Floating Point registers used:// f8, input// f9 -> f15, f32 -> f75// General registers used:// r14 -> r40// Predicate registers used:// p6 -> p15// Assembly macros//==============================================================rRshf = r14rAD_TB1 = r15rAD_T1 = r15rAD_TB2 = r16rAD_T2 = r16rAD_Ln2_lo = r17rAD_P = r17rN = r18rIndex_1 = r19rIndex_2_16 = r20rM = r21rBiased_M = r21rIndex_1_16 = r22rSignexp_x = r23rExp_x = r24rSig_inv_ln2 = r25rAD_Q1 = r26rAD_Q2 = r27rTmp = r27rExp_bias = r28rExp_mask = r29rRshf_2to56 = r30rGt_ln = r31rExp_2tom56 = r31GR_SAVE_B0 = r33GR_SAVE_PFS = r34GR_SAVE_GP = r35GR_SAVE_SP = r36GR_Parameter_X = r37GR_Parameter_Y = r38GR_Parameter_RESULT = r39GR_Parameter_TAG = r40FR_X = f10FR_Y = f1FR_RESULT = f8fRSHF_2TO56 = f6fINV_LN2_2TO63 = f7fW_2TO56_RSH = f9f2TOM56 = f11fP5 = f12fP54 = f50fP5432 = f50fP4 = f13fP3 = f14fP32 = f14fP2 = f15fLn2_by_128_hi = f33fLn2_by_128_lo = f34fRSHF = f35fNfloat = f36fW = f37fR = f38fF = f39fRsq = f40fRcube = f41f2M = f42fS1 = f43fT1 = f44fMIN_DBL_OFLOW_ARG = f45fMAX_DBL_MINUS_1_ARG = f46fMAX_DBL_NORM_ARG = f47fP_lo = f51fP_hi = f52fP = f53fS = f54fNormX = f56fWre_urm_f8 = f57fGt_pln = f58fTmp = f58fS2 = f59fT2 = f60fSm1 = f61fXsq = f62fX6 = f63fX4 = f63fQ7 = f64fQ76 = f64fQ7654 = f64fQ765432 = f64fQ6 = f65fQ5 = f66fQ54 = f66fQ4 = f67fQ3 = f68fQ32 = f68fQ2 = f69fQD = f70fQDC = f70fQDCBA = f70fQDCBA98 = f70fQDCBA98765432 = f70fQC = f71fQB = f72fQBA = f72fQA = f73fQ9 = f74fQ98 = f74fQ8 = f75// Data tables//==============================================================RODATA.align 16// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************// double-extended 1/ln(2)// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88// 3fff b8aa 3b29 5c17 f0bc// For speed the significand will be loaded directly with a movl and setf.sig// and the exponent will be bias+63 instead of bias+0. Thus subsequent// computations need to scale appropriately.// The constant 128/ln(2) is needed for the computation of w. This is also// obtained by scaling the computations.//// Two shifting constants are loaded directly with movl and setf.d.// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)// This constant is added to x*1/ln2 to shift the integer part of// x*128/ln2 into the rightmost bits of the significand.// The result of this fma is fW_2TO56_RSH.// 2. fRSHF = 1.1000..00 * 2^(63)// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give// the integer part of w, n, as a floating-point number.// The result of this fms is fNfloat.LOCAL_OBJECT_START(exp_Table_1)data8 0x40862e42fefa39f0 // smallest dbl overflow argdata8 0xc048000000000000 // approx largest arg for minus one resultdata8 0x40862e42fefa39ef // largest dbl arg to give normal dbl resultdata8 0x0 // paddata8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hidata8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo//// Table 1 is 2^(index_1/128) where// index_1 goes from 0 to 15//data8 0x8000000000000000 , 0x00003FFFdata8 0x80B1ED4FD999AB6C , 0x00003FFFdata8 0x8164D1F3BC030773 , 0x00003FFFdata8 0x8218AF4373FC25EC , 0x00003FFFdata8 0x82CD8698AC2BA1D7 , 0x00003FFFdata8 0x8383594EEFB6EE37 , 0x00003FFFdata8 0x843A28C3ACDE4046 , 0x00003FFFdata8 0x84F1F656379C1A29 , 0x00003FFFdata8 0x85AAC367CC487B15 , 0x00003FFFdata8 0x8664915B923FBA04 , 0x00003FFFdata8 0x871F61969E8D1010 , 0x00003FFFdata8 0x87DB357FF698D792 , 0x00003FFFdata8 0x88980E8092DA8527 , 0x00003FFFdata8 0x8955EE03618E5FDD , 0x00003FFFdata8 0x8A14D575496EFD9A , 0x00003FFFdata8 0x8AD4C6452C728924 , 0x00003FFFLOCAL_OBJECT_END(exp_Table_1)// Table 2 is 2^(index_1/8) where// index_2 goes from 0 to 7LOCAL_OBJECT_START(exp_Table_2)data8 0x8000000000000000 , 0x00003FFFdata8 0x8B95C1E3EA8BD6E7 , 0x00003FFFdata8 0x9837F0518DB8A96F , 0x00003FFFdata8 0xA5FED6A9B15138EA , 0x00003FFFdata8 0xB504F333F9DE6484 , 0x00003FFFdata8 0xC5672A115506DADD , 0x00003FFFdata8 0xD744FCCAD69D6AF4 , 0x00003FFFdata8 0xEAC0C6E7DD24392F , 0x00003FFFLOCAL_OBJECT_END(exp_Table_2)LOCAL_OBJECT_START(exp_p_table)data8 0x3f8111116da21757 //P5data8 0x3fa55555d787761c //P4data8 0x3fc5555555555414 //P3data8 0x3fdffffffffffd6a //P2LOCAL_OBJECT_END(exp_p_table)LOCAL_OBJECT_START(exp_Q1_table)data8 0x3de6124613a86d09 // QD = 1/13!data8 0x3e21eed8eff8d898 // QC = 1/12!data8 0x3ec71de3a556c734 // Q9 = 1/9!data8 0x3efa01a01a01a01a // Q8 = 1/8!data8 0x8888888888888889,0x3ff8 // Q5 = 1/5!data8 0xaaaaaaaaaaaaaaab,0x3ffc // Q3 = 1/3!data8 0x0,0x0 // Pad to avoid bank conflictsLOCAL_OBJECT_END(exp_Q1_table)LOCAL_OBJECT_START(exp_Q2_table)data8 0x3e5ae64567f544e4 // QB = 1/11!data8 0x3e927e4fb7789f5c // QA = 1/10!data8 0x3f2a01a01a01a01a // Q7 = 1/7!data8 0x3f56c16c16c16c17 // Q6 = 1/6!data8 0xaaaaaaaaaaaaaaab,0x3ffa // Q4 = 1/4!data8 0x8000000000000000,0x3ffe // Q2 = 1/2!LOCAL_OBJECT_END(exp_Q2_table).section .textGLOBAL_IEEE754_ENTRY(expm1){ .mlx getf.exp rSignexp_x = f8 // Must recompute if x unorm movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // signif of 1/ln2}{ .mlx addl rAD_TB1 = @ltoff(exp_Table_1), gp movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56)};;// We do this fnorm right at the beginning to normalize// any input unnormals so that SWA is not taken.{ .mfi ld8 rAD_TB1 = [rAD_TB1] fclass.m p6,p0 = f8,0x0b // Test for x=unorm mov rExp_mask = 0x1ffff}{ .mfi mov rExp_bias = 0xffff fnorm.s1 fNormX = f8 mov rExp_2tom56 = 0xffff-56};;// Form two constants we need// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand{ .mfi setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63 fclass.m p8,p0 = f8,0x07 // Test for x=0 nop.i 0}{ .mlx setf.d fRSHF_2TO56 = rRshf_2to56 // Form 1.100 * 2^(63+56) movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for rshift};;{ .mfi setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat fclass.m p9,p0 = f8,0x22 // Test for x=-inf add rAD_TB2 = 0x140, rAD_TB1 // Point to Table 2}{ .mib add rAD_Q1 = 0x1e0, rAD_TB1 // Point to Q table for small path add rAD_Ln2_lo = 0x30, rAD_TB1 // Point to ln2_by_128_lo(p6) br.cond.spnt EXPM1_UNORM // Branch if x unorm};;EXPM1_COMMON:{ .mfi ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_MINUS_1_ARG = [rAD_TB1],16 fclass.m p10,p0 = f8,0x1e1 // Test for x=+inf, NaN, NaT add rAD_Q2 = 0x50, rAD_Q1 // Point to Q table for small path}{ .mfb nop.m 0 nop.f 0(p8) br.ret.spnt b0 // Exit for x=0, return x};;{ .mfi ldfd fMAX_DBL_NORM_ARG = [rAD_TB1],16 nop.f 0 and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x}{ .mfb setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63(p9) fms.d.s0 f8 = f0,f0,f1 // quick exit for x=-inf(p9) br.ret.spnt b0};;{ .mfi ldfpd fQD, fQC = [rAD_Q1], 16 // Load coeff for small path nop.f 0 sub rExp_x = rExp_x, rExp_bias // True exponent of x}{ .mfb ldfpd fQB, fQA = [rAD_Q2], 16 // Load coeff for small path(p10) fma.d.s0 f8 = f8, f1, f0 // For x=+inf, NaN, NaT(p10) br.ret.spnt b0 // Exit for x=+inf, NaN, NaT};;{ .mfi ldfpd fQ9, fQ8 = [rAD_Q1], 16 // Load coeff for small path fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path cmp.gt p7, p8 = -2, rExp_x // Test |x| < 2^(-2)}{ .mfi ldfpd fQ7, fQ6 = [rAD_Q2], 16 // Load coeff for small path
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -