⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_powl.s

📁 glibc 2.9,最新版的C语言库函数
💻 S
📖 第 1 页 / 共 5 页
字号:
.file "powl.s"// Copyright (c) 2000 - 2003, Intel Corporation// All rights reserved.//// Contributed 2000 by the Intel Numerics Group, Intel Corporation//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at// http://www.intel.com/software/products/opensource/libraries/num.htm.////*********************************************************************//// Function:   powl(x,y), where//                          y//             powl(x,y) = x , for double extended precision x and y values////*********************************************************************//// History:// 02/02/00 (Hand Optimized)// 04/04/00 Unwind support added// 08/15/00 Bundle added after call to __libm_error_support to properly//          set [the previously overwritten] GR_Parameter_RESULT.// 01/22/01 Corrected results for powl(1,inf), powl(1,nan), and//          powl(snan,0) to be 1 per C99, not nan.  Fixed many flag settings.// 02/06/01 Call __libm_error support if over/underflow when y=2.// 04/17/01 Support added for y close to 1 and x a non-special value.//          Shared software under/overflow detection for all paths// 02/07/02 Corrected sf3 setting to disable traps// 05/13/02 Improved performance of all paths// 02/10/03 Reordered header: .section, .global, .proc, .align;//          used data8 for long double table values// 04/17/03 Added missing mutex directive// 10/13/03 Corrected .endp names to match .proc names////*********************************************************************//// Resources Used:////    Floating-Point Registers://                        f8  (Input x and Return Value)//                        f9  (Input y)//                        f10-f15,f32-f79////    General Purpose Registers://                        Locals r14-24,r32-r65//                        Parameters to __libm_error_support r62,r63,r64,r65////    Predicate Registers: p6-p15////*********************************************************************////  Special Cases and IEEE special conditions:////    Denormal fault raised on denormal inputs//    Overflow exceptions raised when appropriate for pow//    Underflow exceptions raised when appropriate for pow//    (Error Handling Routine called for overflow and Underflow)//    Inexact raised when appropriate by algorithm////  1.  (anything) ** NatVal or (NatVal) ** anything  is NatVal//  2.  X or Y unsupported or sNaN                    is qNaN/Invalid//  3.  (anything) ** 0  is 1//  4.  (anything) ** 1  is itself//  5.  (anything except 1) ** qNAN is qNAN//  6.  qNAN ** (anything except 0) is qNAN//  7.  +-(|x| > 1) **  +INF is +INF//  8.  +-(|x| > 1) **  -INF is +0//  9.  +-(|x| < 1) **  +INF is +0//  10. +-(|x| < 1) **  -INF is +INF//  11. +-1         ** +-INF is +1//  12. +0 ** (+anything except 0, NAN)               is +0//  13. -0 ** (+anything except 0, NAN, odd integer)  is +0//  14. +0 ** (-anything except 0, NAN)               is +INF/div_0//  15. -0 ** (-anything except 0, NAN, odd integer)  is +INF/div_0//  16. -0 ** (odd integer) = -( +0 ** (odd integer) )//  17. +INF ** (+anything except 0,NAN) is +INF//  18. +INF ** (-anything except 0,NAN) is +0//  19. -INF ** (anything except NAN)  = -0 ** (-anything)//  20. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)//  21. (-anything except 0 and inf) ** (non-integer) is qNAN/Invalid//  22. X or Y denorm/unorm and denorm/unorm operand trap is enabled,//      generate denorm/unorm fault except if invalid or div_0 raised.////*********************************************************************////  Algorithm//  =========////  Special Cases////    If Y = 2,    return X*X.//    If Y = 0.5,  return sqrt(X).////  Compute log(X) to extra precision.////  ker_log_80( X, logX_hi, logX_lo, Safe );////   ...logX_hi + logX_lo approximates log(X) to roughly 80//   ...significant bits of accuracy.////  Compute Y*log(X) to extra precision.////    P_hi := Y * logX_hi//    P_lo := Y * logX_hi - P_hi       ...using FMA//    P_lo := Y * logX_lo + P_lo       ...using FMA////  Compute exp(P_hi + P_lo)////    Flag := 2;//    Expo_Range := 2; (assuming double-extended power function)//    ker_exp_64( P_hi, P_lo, Flag, Expo_Range,//                Z_hi, Z_lo, scale, Safe )////    scale := sgn * scale////    If (Safe) then ...result will not over/underflow//       return scale*Z_hi + (scale*Z_lo)//       quickly//    Else//       take necessary precaution in computing//       scale*Z_hi + (scale*Z_lo)//       to set possible exceptions correctly.//    End If////  Case_Y_Special////   ...Follow the order of the case checks////   If Y is +-0, return +1 without raising any exception.//   If Y is +1,  return X  without raising any exception.//   If Y is qNaN, return Y without exception.//   If X is qNaN, return X without exception.////   At this point, X is real and Y is +-inf.//   Thus |X| can only be 1, strictly bigger than 1, or//   strictly less than 1.////   If |X| < 1, then//   return ( Y == +inf?  +0 : +inf )//   elseif |X| > 1, then//   return ( Y == +inf? +0 : +inf )//   else//   goto Case_Invalid////  Case_X_Special////   ...Follow the order of the case checks//   ...Note that Y is real, finite, non-zero, and not +1.////   If X is qNaN, return X without exception.////   If X is +-0,//   return ( Y > 0 ? +0 : +inf )////   If X is +inf//   return ( Y > 0 ? +inf : +0 )////   If X is -inf//   return -0 ** -Y//   return ( Y > 0 ? +inf : +0 )////  Case_Invalid////   Return 0 * inf to generate a quiet NaN together//   with an invalid exception.////  Implementation//  ==============////   We describe the quick branch since this part is important//   in reaching the normal case efficiently.////  STAGE 1//  -------//   This stage contains two threads.////   Stage1.Thread1////     fclass.m   X_excep,  X_ok   = X, (NatVal or s/qNaN) or//                              +-0, +-infinity////     fclass.nm  X_unsupp, X_supp = X, (NatVal or s/qNaN) or//                              +-(0, unnorm, norm, infinity)////     X_norm := fnorm( X ) with traps disabled////     If (X_excep)  goto Filtering (Step 2)//     If (X_unsupp) goto Filtering (Step 2)////     Stage1.Thread2//     ..............////     fclass.m   Y_excep,  Y_ok   = Y, (NatVal or s/qNaN) or//                              +-0, +-infinity////     fclass.nm  Y_unsupp, Y_supp = Y, (NatVal or s/qNaN) or//                              +-(0, unnorm, norm, infinity)////     Y_norm := fnorm( Y ) with traps disabled////     If (Y_excep)  goto Filtering (Step 2)//     If (Y_unsupp) goto Filtering (Step 2)//////  STAGE 2//  -------//  This stage contains two threads.////     Stage2.Thread1//     ..............////     Set X_lt_0 if X < 0 (using fcmp)//     sgn := +1.0//     If (X_lt_0) goto Filtering (Step 2)////     Stage2.Thread2//     ..............////     Set Y_is_1 if Y = +1 (using fcmp)//     If (Y_is_1) goto Filtering (Step 2)////   STAGE 3//   -------//   This stage contains two threads.//////   Stage3.Thread1//   ..............////     X := fnorm(X) in prevailing traps//////     Stage3.Thread2//     ..............////     Y := fnorm(Y) in prevailing traps////   STAGE 4//   -------////   Go to Case_Normal.//// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************// double-extended 1/ln(2)// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88// 3fff b8aa 3b29 5c17 f0bc// For speed the significand will be loaded directly with a movl and setf.sig//   and the exponent will be bias+63 instead of bias+0.  Thus subsequent//   computations need to scale appropriately.// The constant 2^12/ln(2) is needed for the computation of N.  This is also//   obtained by scaling the computations.//// Two shifting constants are loaded directly with movl and setf.d.//   1. RSHF_2TO51 = 1.1000..00 * 2^(63-12)//        This constant is added to x*1/ln2 to shift the integer part of//        x*2^12/ln2 into the rightmost bits of the significand.//        The result of this fma is N_signif.//   2. RSHF       = 1.1000..00 * 2^(63)//        This constant is subtracted from N_signif * 2^(-51) to give//        the integer part of N, N_fix, as a floating-point number.//        The result of this fms is float_N.RODATA.align 16// L_hi, L_loLOCAL_OBJECT_START(Constants_exp_64_Arg)data8 0xB17217F400000000,0x00003FF2 // L_hi = hi part log(2)/2^12data8 0xF473DE6AF278ECE6,0x00003FD4 // L_lo = lo part log(2)/2^12LOCAL_OBJECT_END(Constants_exp_64_Arg)LOCAL_OBJECT_START(Constants_exp_64_A)// Reverseddata8 0xAAAAAAABB1B736A0,0x00003FFAdata8 0xAAAAAAAB90CD6327,0x00003FFCdata8 0xFFFFFFFFFFFFFFFF,0x00003FFDLOCAL_OBJECT_END(Constants_exp_64_A)LOCAL_OBJECT_START(Constants_exp_64_P)// Reverseddata8 0xD00D6C8143914A8A,0x00003FF2data8 0xB60BC4AC30304B30,0x00003FF5data8 0x888888887474C518,0x00003FF8data8 0xAAAAAAAA8DAE729D,0x00003FFAdata8 0xAAAAAAAAAAAAAF61,0x00003FFCdata8 0x80000000000004C7,0x00003FFELOCAL_OBJECT_END(Constants_exp_64_P)LOCAL_OBJECT_START(Constants_exp_64_T1)data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DCdata4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942Ddata4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDAdata4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3Adata4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5Bdata4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CDdata4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35Bdata4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396Adata4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0CLOCAL_OBJECT_END(Constants_exp_64_T1)LOCAL_OBJECT_START(Constants_exp_64_T2)data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0Edata4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCAdata4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5Adata4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FAdata4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AAdata4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CEdata4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37LOCAL_OBJECT_END(Constants_exp_64_T2)LOCAL_OBJECT_START(Constants_exp_64_W1)data8 0x0000000000000000, 0xBE384454171EC4B4data8 0xBE6947414AA72766, 0xBE5D32B6D42518F8data8 0x3E68D96D3A319149, 0xBE68F4DA62415F36data8 0xBE6DDA2FC9C86A3B, 0x3E6B2E50F49228FEdata8 0xBE49C0C21188B886, 0x3E64BFC21A4C2F1Fdata8 0xBE6A2FBB2CB98B54, 0x3E5DC5DE9A55D329data8 0x3E69649039A7AACE, 0x3E54728B5C66DBA5data8 0xBE62B0DBBA1C7D7D, 0x3E576E0409F1AF5Fdata8 0x3E6125001A0DD6A1, 0xBE66A419795FBDEFdata8 0xBE5CDE8CE1BD41FC, 0xBE621376EA54964Fdata8 0x3E6370BE476E76EE, 0x3E390D1A3427EB92data8 0x3E1336DE2BF82BF8, 0xBE5FF1CBD0F7BD9Edata8 0xBE60A3550CEB09DD, 0xBE5CA37E0980F30Ddata8 0xBE5C541B4C082D25, 0xBE5BBECA3B467D29data8 0xBE400D8AB9D946C5, 0xBE5E2A0807ED374Adata8 0xBE66CB28365C8B0A, 0x3E3AAD5BD3403BCAdata8 0x3E526055C7EA21E0, 0xBE442C75E72880D6data8 0x3E58B2BB85222A43, 0xBE5AAB79522C42BFdata8 0xBE605CB4469DC2BC, 0xBE589FA7A48C40DCdata8 0xBE51C2141AA42614, 0xBE48D087C37293F4data8 0x3E367A1CA2D673E0, 0xBE51BEBB114F7A38data8 0xBE6348E5661A4B48, 0xBDF526431D3B9962data8 0x3E3A3B5E35A78A53, 0xBE46C46C1CECD788data8 0xBE60B7EC7857D689, 0xBE594D3DD14F1AD7data8 0xBE4F9C304C9A8F60, 0xBE52187302DFF9D2data8 0xBE5E4C8855E6D68F, 0xBE62140F667F3DC4data8 0xBE36961B3BF88747, 0x3E602861C96EC6AAdata8 0xBE3B5151D57FD718, 0x3E561CD0FC4A627Bdata8 0xBE3A5217CA913FEA, 0x3E40A3CC9A5D193Adata8 0xBE5AB71310A9C312, 0x3E4FDADBC5F57719data8 0x3E361428DBDF59D5, 0x3E5DB5DB61B4180Ddata8 0xBE42AD5F7408D856, 0x3E2A314831B2B707LOCAL_OBJECT_END(Constants_exp_64_W1)LOCAL_OBJECT_START(Constants_exp_64_W2)data8 0x0000000000000000, 0xBE641F2537A3D7A2data8 0xBE68DD57AD028C40, 0xBE5C77D8F212B1B6data8 0x3E57878F1BA5B070, 0xBE55A36A2ECAE6FEdata8 0xBE620608569DFA3B, 0xBE53B50EA6D300A3data8 0x3E5B5EF2223F8F2C, 0xBE56A0D9D6DE0DF4data8 0xBE64EEF3EAE28F51, 0xBE5E5AE2367EA80Bdata8 0x3E47CB1A5FCBC02D, 0xBE656BA09BDAFEB7data8 0x3E6E70C6805AFEE7, 0xBE6E0509A3415EBAdata8 0xBE56856B49BFF529, 0x3E66DD3300508651data8 0x3E51165FC114BC13, 0x3E53333DC453290Fdata8 0x3E6A072B05539FDA, 0xBE47CD877C0A7696data8 0xBE668BF4EB05C6D9, 0xBE67C3E36AE86C93data8 0xBE533904D0B3E84B, 0x3E63E8D9556B53CEdata8 0x3E212C8963A98DC8, 0xBE33138F032A7A22data8 0x3E530FA9BC584008, 0xBE6ADF82CCB93C97data8 0x3E5F91138370EA39, 0x3E5443A4FB6A05D8data8 0x3E63DACD181FEE7A, 0xBE62B29DF0F67DECdata8 0x3E65C4833DDE6307, 0x3E5BF030D40A24C1data8 0x3E658B8F14E437BE, 0xBE631C29ED98B6C7data8 0x3E6335D204CF7C71, 0x3E529EEDE954A79Ddata8 0x3E5D9257F64A2FB8, 0xBE6BED1B854ED06Cdata8 0x3E5096F6D71405CB, 0xBE3D4893ACB9FDF5data8 0xBDFEB15801B68349, 0x3E628D35C6A463B9data8 0xBE559725ADE45917, 0xBE68C29C042FC476data8 0xBE67593B01E511FA, 0xBE4A4313398801EDdata8 0x3E699571DA7C3300, 0x3E5349BE08062A9Edata8 0x3E5229C4755BB28E, 0x3E67E42677A1F80Ddata8 0xBE52B33F6B69C352, 0xBE6B3550084DA57Fdata8 0xBE6DB03FD1D09A20, 0xBE60CBC42161B2C1data8 0x3E56ED9C78A2B771, 0xBE508E319D0FA795data8 0xBE59482AFD1A54E9, 0xBE2A17CEB07FD23Edata8 0x3E68BF5C17365712, 0x3E3956F9B3785569LOCAL_OBJECT_END(Constants_exp_64_W2)LOCAL_OBJECT_START(Constants_log_80_P)// P_8, P_7, ..., P_1data8 0xCCCE8B883B1042BC, 0x0000BFFB // P_8data8 0xE38997B7CADC2149, 0x00003FFB // P_7data8 0xFFFFFFFEB1ACB090, 0x0000BFFB // P_6data8 0x9249249806481C81, 0x00003FFC // P_5data8 0x0000000000000000, 0x00000000 // Pad for bank conflictsdata8 0xAAAAAAAAAAAAB0EF, 0x0000BFFC // P_4data8 0xCCCCCCCCCCC91416, 0x00003FFC // P_3data8 0x8000000000000000, 0x0000BFFD // P_2data8 0xAAAAAAAAAAAAAAAB, 0x00003FFD // P_1LOCAL_OBJECT_END(Constants_log_80_P)LOCAL_OBJECT_START(Constants_log_80_Q)// log2_hi, log2_lo, Q_6, Q_5, Q_4, Q_3, Q_2, Q_1data8 0xB172180000000000,0x00003FFEdata8 0x82E308654361C4C6,0x0000BFE2data8 0x92492453A51BE0AF,0x00003FFCdata8 0xAAAAAB73A0CFD29F,0x0000BFFCdata8 0xCCCCCCCCCCCE3872,0x00003FFCdata8 0xFFFFFFFFFFFFB4FB,0x0000BFFCdata8 0xAAAAAAAAAAAAAAAB,0x00003FFDdata8 0x8000000000000000,0x0000BFFELOCAL_OBJECT_END(Constants_log_80_Q)LOCAL_OBJECT_START(Constants_log_80_Z_G_H_h1)// Z1 - 16 bit fixed, G1 and H1 IEEE single, h1 IEEE doubledata4 0x00008000,0x3F800000,0x00000000,0x00000000data4 0x00000000,0x00000000,0x00000000,0x00000000data4 0x00007879,0x3F70F0F0,0x3D785196,0x00000000data4 0xEBA0E0D1,0x8B1D330B,0x00003FDA,0x00000000data4 0x000071C8,0x3F638E38,0x3DF13843,0x00000000data4 0x9EADD553,0xE2AF365E,0x00003FE2,0x00000000data4 0x00006BCB,0x3F579430,0x3E2FF9A0,0x00000000data4 0x752F34A2,0xF585FEC3,0x0000BFE3,0x00000000data4 0x00006667,0x3F4CCCC8,0x3E647FD6,0x00000000data4 0x893B03F3,0xF3546435,0x00003FE2,0x00000000data4 0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000data4 0x39CDD2AC,0xBABA62E0,0x00003FE4,0x00000000data4 0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000data4 0x457978A1,0x8718789F,0x00003FE2,0x00000000data4 0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000data4 0x3185E56A,0x9442DF96,0x0000BFE4,0x00000000data4 0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000data4 0x2BBE2CBD,0xCBF9A4BF,0x00003FE4,0x00000000data4 0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000data4 0x852D5935,0xF3537535,0x00003FE3,0x00000000data4 0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000data4 0x46CDF32F,0xA1F1E699,0x0000BFDF,0x00000000data4 0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000data4 0xD8484CE3,0x84A61856,0x00003FE4,0x00000000data4 0x00004925,0x3F124920,0x3F0F4303,0x00000000data4 0xFF28821B,0xC7DD97E0,0x0000BFE2,0x00000000data4 0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000data4 0xEF1FD32F,0xD3C4A887,0x00003FE3,0x00000000data4 0x00004445,0x3F088888,0x3F20EC80,0x00000000data4 0x464C76DA,0x84672BE6,0x00003FE5,0x00000000data4 0x00004211,0x3F042108,0x3F29516A,0x00000000data4 0x18835FB9,0x9A43A511,0x0000BFE5,0x00000000LOCAL_OBJECT_END(Constants_log_80_Z_G_H_h1)LOCAL_OBJECT_START(Constants_log_80_Z_G_H_h2)// Z2 - 16 bit fixed, G2 and H2 IEEE single, h2 IEEE doubledata4 0x00008000,0x3F800000,0x00000000,0x00000000data4 0x00000000,0x00000000,0x00000000,0x00000000data4 0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000data4 0x211398BF,0xAD08B116,0x00003FDB,0x00000000data4 0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000data4 0xC376958E,0xB106790F,0x00003FDE,0x00000000data4 0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000data4 0x79A7679A,0xFD03F242,0x0000BFDA,0x00000000data4 0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000data4 0x05E7AE08,0xF03F81C3,0x0000BFDF,0x00000000data4 0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000data4 0x049EB22F,0xD1B87D3C,0x00003FDE,0x00000000

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -