⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_ceilf.s

📁 glibc 2.9,最新版的C语言库函数
💻 S
字号:
.file "ceilf.s"// Copyright (c) 2000 - 2003, Intel Corporation// All rights reserved.//// Contributed 2000 by the Intel Numerics Group, Intel Corporation//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at// http://www.intel.com/software/products/opensource/libraries/num.htm.//// History//==============================================================// 02/02/00 Initial version// 06/13/00 Improved speed// 06/27/00 Eliminated incorrect invalid flag setting// 05/20/02 Cleaned up namespace and sf0 syntax// 01/28/03 Improved performance//==============================================================// API//==============================================================// float ceilf(float x)//==============================================================// general input registers:// r14 - r19rSignexp   = r14rExp       = r15rExpMask   = r16rBigexp    = r17rM1        = r18rSignexpM1 = r19// floating-point registers:// f8 - f13fXInt      = f9fNormX     = f10fTmp       = f11fAdj       = f12fPreResult = f13// predicate registers used:// p6 - p10// Overview of operation//==============================================================// float ceilf(float x)// Return an integer value (represented as a float) that is the smallest// value not less than x// This is x rounded toward +infinity to an integral value.// Inexact is set if x != ceilf(x)//==============================================================// double_extended// if the exponent is > 1003e => 3F(true) = 63(decimal)// we have a significand of 64 bits 1.63-bits.// If we multiply by 2^63, we no longer have a fractional part// So input is an integer value already.// double// if the exponent is >= 10033 => 34(true) = 52(decimal)// 34 + 3ff = 433// we have a significand of 53 bits 1.52-bits. (implicit 1)// If we multiply by 2^52, we no longer have a fractional part// So input is an integer value already.// single// if the exponent is > 10016 => 17(true) = 23(decimal)// we have a significand of 24 bits 1.23-bits. (implicit 1)// If we multiply by 2^23, we no longer have a fractional part// So input is an integer value already..section .textGLOBAL_LIBM_ENTRY(ceilf){ .mfi      getf.exp         rSignexp  = f8        // Get signexp, recompute if unorm      fclass.m         p7,p0 = f8, 0x0b      // Test x unorm      addl             rBigexp = 0x10016, r0 // Set exponent at which is integer}{ .mfi      mov              rM1 = -1              // Set all ones      fcvt.fx.trunc.s1 fXInt  = f8           // Convert to int in significand      mov              rExpMask    = 0x1FFFF // Form exponent mask};;{ .mfi      mov              rSignexpM1  = 0x2FFFF // Form signexp of -1      fcmp.lt.s1       p8,p9 = f8, f0        // Test x < 0      nop.i            0}{ .mfb      setf.sig         fTmp = rM1            // Make const for setting inexact      fnorm.s1         fNormX  = f8          // Normalize input(p7)  br.cond.spnt     CEIL_UNORM            // Branch if x unorm};;CEIL_COMMON:// Return here from CEIL_UNORM{ .mfi      nop.m            0      fclass.m         p6,p0 = f8, 0x1e7     // Test x natval, nan, inf, 0      nop.i            0};;.pred.rel "mutex",p8,p9{ .mfi      nop.m            0(p8)  fma.s1           fAdj = f0, f0, f0     // If x < 0, adjustment is 0      nop.i            0}{ .mfi      nop.m            0(p9)  fma.s1           fAdj = f1, f1, f0     // If x > 0, adjustment is +1      nop.i            0};;{ .mfi      nop.m            0      fcvt.xf          fPreResult = fXInt    // trunc(x)      nop.i            0}{ .mfb      nop.m            0(p6)  fma.s.s0         f8 = f8, f1, f0       // Result if x natval, nan, inf, 0(p6)  br.ret.spnt      b0                    // Exit if x natval, nan, inf, 0};;{ .mmi      and              rExp = rSignexp, rExpMask // Get biased exponent;;      cmp.ge           p7,p6 = rExp, rBigexp  // Is |x| >= 2^23?(p8)  cmp.lt.unc       p10,p0 = rSignexp, rSignexpM1 // Is -1 < x < 0?};;// If -1 < x < 0, we turn off p6 and compute result as -0{ .mfi(p10) cmp.ne           p6,p0 = r0,r0(p10) fmerge.s         f8 = fNormX, f0      nop.i            0};;.pred.rel "mutex",p6,p7{ .mfi      nop.m            0(p6)  fma.s.s0         f8 = fPreResult, f1, fAdj // Result if !int, |x| < 2^23      nop.i            0}{ .mfi      nop.m            0(p7)  fma.s.s0         f8 = fNormX, f1, f0    // Result, if |x| >= 2^23(p10) cmp.eq           p6,p0 = r0,r0          // If -1 < x < 0, turn on p6 again};;{ .mfi      nop.m            0(p6)  fcmp.eq.unc.s1   p8, p9 = fPreResult, fNormX // Is trunc(x) = x ?      nop.i            0};;{ .mfi      nop.m            0(p9)  fmpy.s0          fTmp = fTmp, fTmp      // Dummy to set inexact      nop.i            0}{ .mfb      nop.m            0(p8)  fma.s.s0         f8 = fNormX, f1, f0    // If x int, result normalized x      br.ret.sptk      b0                     // Exit main path, 0 < |x| < 2^23};;CEIL_UNORM:// Here if x unorm{ .mfb      getf.exp         rSignexp  = fNormX     // Get signexp, recompute if unorm      fcmp.eq.s0       p7,p0 = f8, f0         // Dummy op to set denormal flag      br.cond.sptk     CEIL_COMMON            // Return to main path};;GLOBAL_LIBM_END(ceilf)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -