⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_erfl.s

📁 glibc 2.9,最新版的C语言库函数
💻 S
📖 第 1 页 / 共 4 页
字号:
data8 0xDBF73927E19B7C8D, 0x00003FCC //A22 = 7.6315938248752024965922341872e-16data8 0xF55CBA3052730592, 0x00003FCB //A21 = 4.2563559623888750271176552350e-16data8 0xA1DC9380DA82CFF6, 0x0000BFD2 //A20 = -3.5940500736023122607663701015e-14data8 0xAAD1AE1067F3D577, 0x00003FD2 //A19 = 3.7929451192558641569555227613e-14data8 0xCD1DB83F3B9D2090, 0x00003FD7 //A18 = 1.4574374961011929143375716362e-12data8 0x87235ACB5E8BB298, 0x0000BFD9 //A17 = -3.8408559294899660346666452560e-12data8 0xDA417B78FF9F46B4, 0x0000BFDC //A16 = -4.9625621225715971268115023451e-11data8 0xF075762685484436, 0x00003FDE //A15 = 2.1869603559309150844390066920e-10data8 0xB989FDB3795165C7, 0x00003FE1 //A14 = 1.3499740992928183247608593000e-09LOCAL_OBJECT_END(_0p5_to_1_data)LOCAL_OBJECT_START(_1_to_2_data)// Polynomial coefficients for the erf(x), 1 <= |x| < 2.0 data8 0x8E15015F5B55BEAC, 0x00003FFC //A3 = 1.3875200409423426678618977531e-01data8 0xBFC6D5A95D0A1B7E //A2H = -1.7839543383544403942764233761e-01data8 0xBC7499F704C80E02 //A2L = -1.7868888188464394090788198634e-17data8 0x3FBE723726B824A8 //A1H = 1.1893028922362935961842822508e-01data8 0x3C6B77F399C2AD27 //A1L = 1.1912589318015368492508652194e-17data8 0x3FEEEA5557137ADF //A0H = 9.6610514647531064991170524081e-01data8 0x3C963D0DDD0A762F //A0L = 7.7155271023949055047261953350e-17data8 0x8FAA405DAD409771, 0x0000BFDB //A25 = -1.6332824616946528652252813763e-11data8 0x941386F4697976D8, 0x0000BFDD //A24 = -6.7337295147729213955410252613e-11data8 0xBCBE75234530B404, 0x00003FDF //A23 = 3.4332329029092304943838374908e-10data8 0xF55E2CE71A00D040, 0x00003FDF //A22 = 4.4632156034175937694868068394e-10data8 0xA6CADFE489D2671F, 0x0000BFE3 //A21 = -4.8543000253822277507724949798e-09data8 0xA4C69F11FEAFB3A8, 0x00003FE2 //A20 = 2.3978044150868471771557059958e-09data8 0xD63441E3BED59703, 0x00003FE6 //A19 = 4.9873285553412397317802071288e-08data8 0xDFDAED9D3089D732, 0x0000BFE7 //A18 = -1.0424069510877052249228047044e-07data8 0xB47287FF165756A5, 0x0000BFE9 //A17 = -3.3610945128073834488448164164e-07data8 0xCDAF2DC0A79A9059, 0x00003FEB //A16 = 1.5324673941628851136481785187e-06data8 0x9FD6A7B2ECE8EDA9, 0x00003FEA //A15 = 5.9544479989469083598476592569e-07data8 0xEC6E63BB4507B585, 0x0000BFEE //A14 = -1.4092398243085031882423746824e-05LOCAL_OBJECT_END(_1_to_2_data)LOCAL_OBJECT_START(_2_to_3p25_data)// Polynomial coefficients for the erf(x), 2 <= |x| < 3.25 data8 0xCEDBA58E8EE6F055, 0x00003FF7 //A3 = 6.3128050215859026984338771121e-03data8 0xBF5B60D5E974CBBD //A2H = -1.6710366233609740427984435840e-03data8 0xBC0E11E2AEC18AF6 //A2L = -2.0376133202996259839305825162e-19data8 0x3F32408E9BA3327E //A1H = 2.7850610389349567379974059733e-04data8 0x3BE41010E4B3B224 //A1L = 3.3987633691879253781833531576e-20data8 0x3FEFFFD1AC4135F9 //A0H = 9.9997790950300136092465663751e-01data8 0x3C8EEAFA1E97EAE0 //A0L = 5.3633970564750967956196033852e-17data8 0xBF9C6F2C6D7263C1, 0x00003FF0 //A25 = 4.5683639377039166585098497471e-05data8 0xCB4167CC4798096D, 0x00003FF0 //A24 = 4.8459885139772945417160731273e-05data8 0xE1394FECFE972D32, 0x0000BFF2 //A23 = -2.1479022581129892562916533804e-04data8 0xC7F9E47581FC2A5F, 0x0000BFF2 //A22 = -1.9071211076537531370822343363e-04data8 0xDD612EDFAA41BEAE, 0x00003FF2 //A21 = 2.1112405918671957390188348542e-04data8 0x8C166AA4CB2AD8FD, 0x0000BFF4 //A20 = -5.3439165021555312536009227942e-04data8 0xEFBE33D9F62B68D4, 0x0000BFF2 //A19 = -2.2863672131516067770956697877e-04data8 0xCCB92F5D91562494, 0x00003FF5 //A18 = 1.5619154280865226092321881421e-03data8 0x80A5DBE71D4BA0E2, 0x0000BFF6 //A17 = -1.9630109664962540123775799179e-03data8 0xA0ADEB2D4C41347A, 0x0000BFF4 //A16 = -6.1294315248639348947483422457e-04data8 0xB1F5D4911B911665, 0x00003FF7 //A15 = 5.4309165882071876864550213817e-03data8 0xF2F3D8D21E8762E0, 0x0000BFF7 //A14 = -7.4143227286535936033409745884e-03LOCAL_OBJECT_END(_2_to_3p25_data)LOCAL_OBJECT_START(_4_to_6p53_data)// Polynomial coefficients for the erf(x), 4 <= |x| < 6.53 data8 0xDF3151BE8652827E, 0x00003FD5 //A3 = 3.9646979666953349095427642209e-13data8 0xBD1C4A9787DF888B //A2H = -2.5127788450714750484839908889e-14data8 0xB99B35483E4603FD //A2L = -3.3536613901268985626466020210e-31data8 0x3CD2DBF507F1A1F3 //A1H = 1.0468963266736687758710258897e-15data8 0x398A97B60913B4BD //A1L = 1.6388968267515149775818013207e-31data8 0x3FEFFFFFFFFFFFFF //A0H = 9.9999999999999988897769753748e-01data8 0x3C99CC25E658129E //A0L = 8.9502895736398715695745861054e-17data8 0xB367B21294713D39, 0x00003FFB //A25 = 8.7600127403270828432337605471e-02data8 0xCEE3A423ADEC0F4C, 0x00003FFD //A24 = 4.0408051429309221404807497715e-01data8 0xC389626CF2D727C0, 0x00003FFE //A23 = 7.6381507072332210580356159947e-01data8 0xD15A03E082D0A307, 0x00003FFE //A22 = 8.1777977210259904277239787430e-01data8 0x8FD3DA92675E8E00, 0x00003FFE //A21 = 5.6182638239203638864793584264e-01data8 0xFD375E6EE167AA58, 0x00003FFC //A20 = 2.4728152801285544751731937424e-01data8 0x89A9482FADE66AE1, 0x00003FFB //A19 = 6.7217410998398471333985773237e-02data8 0xC62E1F02606C04DD, 0x00003FF7 //A18 = 6.0479785358923404401184993359e-03data8 0xEE7BF2BE71CC531C, 0x0000BFF5 //A17 = -1.8194898432032114199803271708e-03data8 0x8084081981CDC79C, 0x0000BFF5 //A16 = -9.8049734947701208487713246099e-04data8 0x8975DFB834C118C3, 0x0000BFF0 //A15 = -3.2773123965143773578608926094e-05data8 0x965DA4A80008B7BC, 0x0000BFEE //A14 = -8.9624997201558650125662820562e-06LOCAL_OBJECT_END(_4_to_6p53_data)LOCAL_OBJECT_START(_3p25_to_4_data)// Polynomial coefficients for the erf(x), 3.25 <= |x| < 4 data8 0xB01D29846286CE08, 0x00003FEE //A3 = 1.0497207328743021499800978059e-05data8 0xBEC10B1488AEB234 //A2H = -2.0317175474986489113480084279e-06data8 0xBB7F19701B8B74F9 //A2L = -4.1159669348226960337518214996e-22data8 0x3E910B1488AEB234 //A1H = 2.5396469343733111391850105348e-07data8 0x3B4F1944906D5D60 //A1L = 5.1448487494628801547474934193e-23data8 0x3FEFFFFFF7B91176 //A0H = 9.9999998458274208523732795584e-01data8 0x3C70B2865615DB3F //A0L = 1.4482653192002495179309994964e-17data8 0xA818D085D56F3021, 0x00003FEC //A25 = 2.5048394770210505593609705765e-06data8 0xD9C5C509AAE5561F, 0x00003FEC //A24 = 3.2450636894654766492719395406e-06data8 0x9682D71C549EEB07, 0x0000BFED //A23 = -4.4855801709974050650263470866e-06data8 0xBC230E1EB6FBF8B9, 0x00003FEA //A22 = 7.0086469577174843181452303996e-07data8 0xE1432649FF29D4DE, 0x0000BFEA //A21 = -8.3916747195472308725504497231e-07data8 0xB40CEEBD2803D2F0, 0x0000BFEF //A20 = -2.1463694318102769992677291330e-05data8 0xEAAB57ABFFA003EB, 0x00003FEF //A19 = 2.7974761309213643228699449426e-05data8 0xFBFA4D0B893A5BFB, 0x0000BFEE //A18 = -1.5019043571612821858165073446e-05data8 0xBB6AA248EED3E364, 0x0000BFF0 //A17 = -4.4683584873907316507141131797e-05data8 0x86C1B3AE3E500ED9, 0x00003FF2 //A16 = 1.2851395412345761361068234880e-04data8 0xB60729445F0C37B5, 0x0000BFF2 //A15 = -1.7359540313300841352152461287e-04data8 0xCA389F9E707337B1, 0x00003FF1 //A14 = 9.6426575465763394281615740282e-05LOCAL_OBJECT_END(_3p25_to_4_data)//////// "Tail" tables //////////LOCAL_OBJECT_START(_0p125_to_0p25_data_tail)// Polynomial coefficients for the erf(x), 1/8 <= |x| < 1/4 data8 0x93086CBD21ED3962, 0x00003FCA //A13 = 1.2753071968462837024755878679e-16data8 0x83CB5045A6D4B419, 0x00003FCF //A12 = 3.6580237062957773626379648530e-15data8 0x8FCDB723209690EB, 0x0000BFD3 //A11 = -6.3861616307180801527566117146e-14data8 0xCAA173F680B5D56B, 0x0000BFD7 //A10 = -1.4397775466324880354578008779e-12data8 0xF0CEA934AD6AC013, 0x00003FDB //A9 = 2.7376616955640415767655526857e-11data8 0x81C69F9D0B5AB8EE, 0x00003FE0 //A8 = 4.7212187567505249115688961488e-10data8 0xA8B590298C20A194, 0x0000BFE4 //A7 = -9.8201697105565925460801441797e-09data8 0x84F3DE72AC964615, 0x0000BFE8 //A6 = -1.2382176987480830706988411266e-07data8 0xC01A1398868CC4BD, 0x00003FEC //A5 = 2.8625408039722670291121341583e-06data8 0xCC43247F4410C54A, 0x00003FEF //A4 = 2.4349960762505993017186935493e-05LOCAL_OBJECT_END(_0p125_to_0p25_data_tail)LOCAL_OBJECT_START(_0p25_to_0p5_data_tail)// Polynomial coefficients for the erf(x), 1/4 <= |x| < 1/2 data8 0x8CEAC59AF361B78A, 0x0000BFD6 //A13 = -5.0063802958258679384986669123e-13data8 0x9BC67404F348C0CE, 0x00003FDB //A12 = 1.7709590771868743572061278273e-11data8 0xF4B5D0348AFAAC7A, 0x00003FDB //A11 = 2.7820329729584630464848160970e-11data8 0x83AB447FF619DA4A, 0x0000BFE2 //A10 = -1.9160363295631539615395477207e-09data8 0x82115AB487202E7B, 0x00003FE0 //A9 = 4.7318386460142606822119637959e-10data8 0xB84D5B0AE17054AA, 0x00003FE8 //A8 = 1.7164477188916895004843908951e-07data8 0xB2E085C1C4AA06E5, 0x0000BFE9 //A7 = -3.3318445266863554512523957574e-07data8 0xCD3CA2E6C3971666, 0x0000BFEE //A6 = -1.2233070175554502732980949519e-05data8 0xBA445C53F8DD40E6, 0x00003FF0 //A5 = 4.4409521535330413551781808621e-05data8 0xAA94D5E68033B764, 0x00003FF4 //A4 = 6.5071635765452563856926608000e-04LOCAL_OBJECT_END(_0p25_to_0p5_data_tail)LOCAL_OBJECT_START(_0p5_to_1_data_tail)// Polynomial coefficients for the erf(x), 1/2 <= |x| < 1 data8 0x9ED99EDF111CB785, 0x0000BFE4 //A13 = -9.2462916180079278241704711522e-09data8 0xDEAF7539AE2FB062, 0x0000BFE5 //A12 = -2.5923990465973151101298441139e-08data8 0xA392D5E5CC9DB1A7, 0x00003FE9 //A11 = 3.0467952847327075747032372101e-07data8 0xC311A7619B96CA1A, 0x00003FE8 //A10 = 1.8167212632079596881709988649e-07data8 0x82082E6B6A93F116, 0x0000BFEE //A9 = -7.7505086843257228386931766018e-06data8 0x96D9997CF326A36D, 0x00003FEE //A8 = 8.9913605625817479172071008270e-06data8 0x97057D85DCB0ED99, 0x00003FF2 //A7 = 1.4402527482741758767786898553e-04data8 0xDC23BCB3599C0490, 0x0000BFF3 //A6 = -4.1988296144950673955519083419e-04data8 0xDA150C4867208A81, 0x0000BFF5 //A5 = -1.6638352864915033417887831090e-03data8 0x9A4DAF550A2CC29A, 0x00003FF8 //A4 = 9.4179355839141698591817907680e-03LOCAL_OBJECT_END(_0p5_to_1_data_tail)LOCAL_OBJECT_START(_1_to_2_data_tail)// Polynomial coefficients for the erf(x), 1 <= |x| < 2.0 data8 0x969EAC5C7B46CAB9, 0x00003FEF //A13 = 1.7955281439310148162059582795e-05data8 0xA2ED832912E9FCD9, 0x00003FF1 //A12 = 7.7690020847111408916570845775e-05data8 0x85677C39C48E43E7, 0x0000BFF3 //A11 = -2.5444839340796031538582511806e-04data8 0xC2DAFA91683DAAE4, 0x0000BFF1 //A10 = -9.2914288456063075386925076097e-05data8 0xE01C061CBC6A2825, 0x00003FF5 //A9 = 1.7098195515864039518892834211e-03data8 0x9AD7271CAFD01C78, 0x0000BFF6 //A8 = -2.3626776207372761518718893636e-03data8 0x9B6B9D30EDD5F4FF, 0x0000BFF7 //A7 = -4.7430532011804570628999212874e-03data8 0x9E51EB9623F1D446, 0x00003FF9 //A6 = 1.9326171998839772791190405201e-02data8 0xF391B935C12546DE, 0x0000BFF8 //A5 = -1.4866286152953671441682166195e-02data8 0xB6AD4AE850DBF526, 0x0000BFFA //A4 = -4.4598858458861014323191919669e-02LOCAL_OBJECT_END(_1_to_2_data_tail)LOCAL_OBJECT_START(_2_to_3p25_data_tail)// Polynomial coefficients for the erf(x), 2 <= |x| < 3.25 data8 0x847C24DAC7C7558B, 0x00003FF5 //A13 = 1.0107798565424606512130100541e-03data8 0xCB6340EAF02C3DF8, 0x00003FF8 //A12 = 1.2413800617425931997420375435e-02data8 0xB5163D252DBBC107, 0x0000BFF9 //A11 = -2.2105330871844825370020459523e-02data8 0x82FF9C0B68E331E4, 0x00003FF9 //A10 = 1.5991024756001692140897408128e-02data8 0xE9519E4A49752E04, 0x00003FF7 //A9 = 7.1203253651891723548763348088e-03data8 0x8D52F11B7AE846D9, 0x0000BFFA //A8 = -3.4502927613795425888684181521e-02data8 0xCCC5A3E32BC6FA30, 0x00003FFA //A7 = 4.9993171868423886228679106871e-02data8 0xC1791AD8284A1919, 0x0000BFFA //A6 = -4.7234635220336795411997070641e-02data8 0x853DAAA35A8A3C18, 0x00003FFA //A5 = 3.2529512934760303976755163452e-02data8 0x88E42D8F47FAB60E, 0x0000BFF9 //A4 = -1.6710366233609742619461063050e-02LOCAL_OBJECT_END(_2_to_3p25_data_tail)LOCAL_OBJECT_START(_4_to_6p53_data_tail)// Polynomial coefficients for the erf(x), 4 <= |x| < 6.53 data8 0xD8235ABF08B8A6D1, 0x00003FEE //A13 = 1.2882834877224764938429832586e-05data8 0xAEDF44F9C77844C2, 0x0000BFEC //A12 = -2.6057980393716019511497492890e-06data8 0xCCD5490956A4FCFD, 0x00003FEA //A11 = 7.6306293047300300284923464089e-07data8 0xF71AF0126EE26AEA, 0x0000BFE8 //A10 = -2.3013467500738417953513680935e-07data8 0xE4CE68089858AC20, 0x00003FE6 //A9 = 5.3273112263151109935867439775e-08data8 0xBD15106FBBAEE593, 0x0000BFE4 //A8 = -1.1006037358336556244645388790e-08data8 0x8BBF9A5769B6E480, 0x00003FE2 //A7 = 2.0336075804332107927300019116e-09data8 0xB049D845D105E302, 0x0000BFDF //A6 = -3.2066683399502826067820249320e-10data8 0xBAC69B3F0DFE5483, 0x00003FDC //A5 = 4.2467901578369360007795282687e-11data8 0xA29C398F83F8A0D1, 0x0000BFD9 //A4 = -4.6216613698438694005327544047e-12LOCAL_OBJECT_END(_4_to_6p53_data_tail)LOCAL_OBJECT_START(_3p25_to_4_data_tail)// Polynomial coefficients for the erf(x), 3.25 <= |x| < 4 data8 0x95BE1BEAD738160F, 0x00003FF2 //A13 = 1.4280568455209843005829620687e-04data8 0x8108C8FFAC0F0B21, 0x0000BFF4 //A12 = -4.9222685622046459346377033307e-04data8 0xD72A7FAEE7832BBE, 0x00003FF4 //A11 = 8.2079319302109644436194651098e-04data8 0x823AB4281CA7BBE7, 0x0000BFF5 //A10 = -9.9357079675971109178261577703e-04data8 0xFA1232D476048D11, 0x00003FF4 //A9 = 9.5394549599882496825916138915e-04data8 0xC463D7AF88025FB2, 0x0000BFF4 //A8 = -7.4916843357898101689031755368e-04data8 0xFEBE32B6B379D072, 0x00003FF3 //A7 = 4.8588363901002111193445057206e-04data8 0x882829BB68409BF3, 0x0000BFF3 //A6 = -2.5969865184916169002074135516e-04data8 0xED2F886E29DAAB09, 0x00003FF1 //A5 = 1.1309894347742479284610149994e-04data8 0xA4C07129436555B2, 0x0000BFF0 //A4 = -3.9279872584973887163830479579e-05LOCAL_OBJECT_END(_3p25_to_4_data_tail)LOCAL_OBJECT_START(_0_to_1o8_data)// Polynomial coefficients for the erf(x), 0.0 <= |x| < 0.125 data8 0x3FF20DD750429B6D, 0x3C71AE3A8DDFFEDE //A1H, A1Ldata8 0xF8B0DACE42525CC2, 0x0000BFEE //A15data8 0xFCD02E1BF0EC2C37, 0x00003FF1 //A13data8 0xE016D968FE473B5E, 0x0000BFF4 //A11data8 0xAB2DE68711BF5A79, 0x00003FF7 //A9data8 0xDC16718944518309, 0x0000BFF9 //A7data8 0xE71790D0215F0C8F, 0x00003FFB //A5data8 0xC093A3581BCF3612, 0x0000BFFD //A3LOCAL_OBJECT_END(_0_to_1o8_data)LOCAL_OBJECT_START(_denorm_data)data8 0x3FF20DD750429B6D //A1H = 1.1283791670955125585606992900e+00data8 0x3C71AE3A914FED80 //A1L = 1.5335459613165880745599768129e-17LOCAL_OBJECT_END(_denorm_data).section .textGLOBAL_LIBM_ENTRY(erfl){ .mfi      alloc          r32         = ar.pfs, 0, 21, 0, 0       fmerge.se      fArgAbsNorm = f1, f8      // normalized x (1.0 <= x < 2.0)      addl           rSignBit    = 0x20000, r0 // Set sign bit for exponent}{ .mlx      addl           rDataPtr    = @ltoff(erfl_data), gp // Get common data ptr      movl           r1p5        = 0x3FF8000000000000    // 1.5 in dbl repres.};;{ .mfi      getf.exp       rArgExp     = f8              // Get arg exponent      fclass.m       p6,p0       = f8, 0xEF // Filter 0, denormals and specials                             // 0xEF = @qnan|@snan|@pos|@neg|@zero|@unorm|@inf      addl           rBias       = 0xfffc, r0 // Value to subtract from exp                                               // to get actual interval number}{ .mfi      ld8            rDataPtr    = [rDataPtr]  // Get real common data pointer      fma.s1         fArgSqr     = f8, f8, f0  // x^2 (for [0;1/8] path)      addl           r2to4       = 0x10000, r0 // unbiased exponent                                                // for [2;4] binary interval};;{ .mfi      getf.sig       rArgSig     = f8              // Get arg significand       fcmp.lt.s1     p15, p14    = f8, f0          // Is arg negative/positive?      addl           rSaturation = 0xd0e, r0       // First 12 bits of                                                   // saturation value signif.}{ .mfi      setf.d         f1p5        = r1p5            // 1.5 construction       fma.s1         f2p0        = f1,f1,f1        // 2.0 construction      addl           r3p25Sign   = 0xd00, r0       // First 12 bits of                                                   // 3.25 value signif.};;{ .mfi      addl           rTailDataPtr = 0x700, rDataPtr  // Pointer to "tail" data      nop.f          0      andcm          rArgExp     = rArgExp, rSignBit // Remove sign of exp}{ .mfb      addl           rTiny       = 0xf000, r0 // Tiny value for saturation path      nop.f          0(p6)  br.cond.spnt   erfl_spec              // Branch to zero, denorm & specs};;{ .mfi      sub            rInterval   = rArgExp, rBias // Get actual interval number      nop.f          0      shr.u          rArgSig     = rArgSig, 52    // Leave only 12 bits of sign. }{ .mfi      adds           rShiftedDataPtr = 0x10, rDataPtr // Second ptr to data      nop.f          0      cmp.eq         p8, p10     = r2to4, rArgExp // If exp is in 2to4 interval?};;{ .mfi(p8)  cmp.le         p8, p10     = r3p25Sign, rArgSig // If sign. is greater                             //  than 1.25? (means arg is in [3.25;4] interval)      nop.f          0      shl            rOffset     = rInterval, 8 // Make offset from                                                 // interval number}{ .mfi      cmp.gt         p9, p0      = 0x0, rInterval // If interval is less than 0                                                  // (means arg is in [0; 1/8])      nop.f          0      cmp.eq         p7, p0      = 0x5, rInterval // If arg is in [4:8] interv.?};;{ .mfi(p8)  adds           rOffset     = 0x200, rOffset // Add additional offset                                  // if arg is in [3.25;4] (another data set)      fma.s1         fArgCube    = fArgSqr, f8, f0  // x^3 (for [0;1/8] path)      shl            rTailOffset = rInterval, 7  // Make offset to "tail" data                                                 // from interval number}{ .mib      setf.exp       fTiny       = rTiny // Construct "tiny" value                                          // for saturation path      cmp.ltu        p11, p0     = 0x5, rInterval // if arg > 8(p9)  br.cond.spnt   _0_to_1o8       

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -