📄 libm_lgammal.s
字号:
data8 0xBFE0000000000000 //P1// short version of "lnsin" polynomialdata8 0xD28D3312983E9918, 0x00003FFF //A2data8 0x8A8991563EC241B6, 0x00003FFE //A4data8 0xADA06588061830A5, 0x00003FFD //A6data8 0x80859B57C31CB746, 0x00003FFD //A8LOCAL_OBJECT_END(lgammal_1pEps_data)LOCAL_OBJECT_START(lgammal_neg2andHalf_data)// Polynomial coefficients for the lgammal(x), -2.005859375 <= x < -2.5data8 0xBF927781D4BB093A, 0xBC511D86D85B7045 // A3, A0Ldata8 0x3FF1A68793DEFC15, 0x3C9852AE2DA7DEEF // A1, A1Ldata8 0x408555562D45FAFD, 0xBF972CDAFE5FEFAD // D0, D1data8 0xC18682331EF492A5, 0xC1845E3E0D29606B // C20, C21data8 0x4013141822E16979, 0x3CCF8718B6E75F6C // A2, A2Ldata8 0xBFACCBF9F5ED0F15, 0xBBDD1AEB73297401 // A0, A3Ldata8 0xCCCDB17423046445, 0x00004006 // E6data8 0x800514E230A3A452, 0x00004005 // E4data8 0xAAE9A48EC162E76F, 0x00004003 // E2data8 0x81D4F88B3F3EA0FC, 0x00004002 // E0data8 0x40CF3F3E35238DA0, 0xC0F8B340945F1A7E // D6, D7data8 0x40BF89EC0BD609C6, 0xC095897242AEFEE2 // D4, D5data8 0x40A2482FF01DBC5C, 0xC02095E275FDCF62 // D2, D3data8 0xC1641354F2312A6A, 0xC17B3657F85258E9 // C18, C19data8 0xC11F964E9ECBE2C9, 0xC146D7A90F70696C // C16, C17data8 0xE7AECDE6AF8EA816, 0x0000BFEF // E7data8 0xD711252FEBBE1091, 0x0000BFEB // E5data8 0xE648BD10F8C43391, 0x0000BFEF // E3data8 0x948A1E78AA00A98D, 0x0000BFF4 // E1LOCAL_OBJECT_END(lgammal_neg2andHalf_data)LOCAL_OBJECT_START(lgammal_near_neg_half_data)// Polynomial coefficients for the lgammal(x), -0.5 < x < -0.40625data8 0xBFC1AE55B180726C, 0x3C8053CD734E6A1D // A3, A0Ldata8 0x3FA2AED059BD608A, 0x3C0CD3D2CDBA17F4 // A1, A1Ldata8 0x40855554DBCD1E1E, 0x3F96C51AC2BEE9E1 // D0, D1data8 0xC18682331EF4927D, 0x41845E3E0D295DFC // C20, C21data8 0x4011DE9E64DF22EF, 0x3CA692B70DAD6B7B // A2, A2Ldata8 0x3FF43F89A3F0EDD6, 0xBC4955AED0FA087D // A0, A3Ldata8 0xCCCD3F1DF4A2C1DD, 0x00004006 // E6data8 0x80028ADE33C7FCD9, 0x00004005 // E4data8 0xAACA474E485507EF, 0x00004003 // E2data8 0x80F07C206D6B0ECD, 0x00004002 // E0data8 0x40CF3F3E33E83056, 0x40F8B340944633D9 // D6, D7data8 0x40BF89EC059931F0, 0x409589723307AD20 // D4, D5data8 0x40A2482FD0054824, 0x402095CE7F19D011 // D2, D3data8 0xC1641354F2313614, 0x417B3657F8525354 // C18, C19data8 0xC11F964E9ECFD21C, 0x4146D7A90F701836 // C16, C17data8 0x86A9C01F0EA11E5A, 0x0000BFF5 // E7data8 0xBF6D8469142881C0, 0x0000BFF6 // E5data8 0x8D45D277BA8255F1, 0x0000BFF8 // E3data8 0xED2CEA9BA528BCC3, 0x0000BFF9 // E1LOCAL_OBJECT_END(lgammal_near_neg_half_data)//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!////////////// POLYNOMIAL COEFFICIENTS FOR "NEAR ROOTS" RANGES /////////////////////////// THIS PART OF TABLE SHOULD BE ADDRESSED REALLY RARE ///////////////!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!LOCAL_OBJECT_START(lgammal_right_roots_polynomial_data)// Polynomial coefficients for right root on [-3, -2]// Lgammal is aproximated by polynomial within [-.056244 ; .158208 ] rangedata8 0xBBBD5E9DCD11030B, 0xB867411D9FF87DD4 //A0data8 0x3FF83FE966AF535E, 0x3CAA21235B8A769A //A1data8 0x40136EEBB002F55C, 0x3CC3959A6029838E //A2data8 0xB4A5302C53C2BEDD, 0x00003FFF //A3data8 0x8B8C6BE504F2DA1C, 0x00004002 //A4data8 0xB99CFF02593B4D98, 0x00004001 //A5data8 0x4038D32F682AA1CF //A6data8 0x403809F04EE6C5B5 //A7data8 0x40548EAA81634CEE //A8data8 0x4059297ADB6BC03D //A9data8 0x407286FB8EC5C9DA //A10data8 0x407A92E05B744CFB //A11data8 0x4091A9D4144258CD //A12data8 0x409C4D01D24F367E //A13data8 0x40B1871B9A426A83 //A14data8 0x40BE51C48BD9A583 //A15data8 0x40D2140D0C6153E7 //A16data8 0x40E0FB2C989CE4A3 //A17data8 0x40E52739AB005641 //A18data8 0x41161E3E6DDF503A //A19// Polynomial coefficients for right root on [-4, -3]// Lgammal is aproximated by polynomial within [-.172797 ; .171573 ] rangedata8 0x3C172712B248E42E, 0x38CB8D17801A5D67 //A0data8 0x401F20A65F2FAC54, 0x3CCB9EA1817A824E //A1data8 0x4039D4D2977150EF, 0x3CDA42E149B6276A //A2data8 0xE089B8926AE2D9CB, 0x00004005 //A3data8 0x933901EBBB586C37, 0x00004008 //A4data8 0xCCD319BED1CFA1CD, 0x0000400A //A5data8 0x40D293C3F78D3C37 //A6data8 0x40FBB97AA0B6DD02 //A7data8 0x41251EA3345E5EB9 //A8data8 0x415057F65C92E7B0 //A9data8 0x41799C865241B505 //A10data8 0x41A445209EFE896B //A11data8 0x41D02D21880C953B //A12data8 0x41F9FFDE8C63E16D //A13data8 0x422504DC8302D2BE //A14data8 0x425111BF18C95414 //A15data8 0x427BCBE74A2B8EF7 //A16data8 0x42A7256F59B286F7 //A17data8 0x42D462D1586DE61F //A18data8 0x42FBB1228D6C5118 //A19// Polynomial coefficients for right root on [-5, -4]// Lgammal is aproximated by polynomial within [-.163171 ; .161988 ] rangedata8 0x3C5840FBAFDEE5BB, 0x38CAC0336E8C490A //A0data8 0x403ACA5CF4921642, 0x3CCEDCDDA5491E56 //A1data8 0x40744415CD813F8E, 0x3CFBFEBC17E39146 //A2data8 0xAACD88D954E3E1BD, 0x0000400B //A3data8 0xCB68C710D75ED802, 0x0000400F //A4data8 0x8130F5AB997277AC, 0x00004014 //A5data8 0x41855E3DBF99EBA7 //A6data8 0x41CD14FE49C49FC2 //A7data8 0x421433DCE281F07D //A8data8 0x425C8399C7A92B6F //A9data8 0x42A45FBE67840F1A //A10data8 0x42ED68D75F9E6C98 //A11data8 0x433567291C27E5BE //A12data8 0x437F5ED7A9D9FD28 //A13data8 0x43C720A65C8AB711 //A14data8 0x441120A6C1D40B9B //A15data8 0x44596F561F2D1CBE //A16data8 0x44A3507DA81D5C01 //A17data8 0x44EF06A31E39EEDF //A18data8 0x45333774C99F523F //A19// Polynomial coefficients for right root on [-6, -5]// Lgammal is aproximated by polynomial within [-.156450 ; .156126 ] rangedata8 0x3C71B82D6B2B3304, 0x3917186E3C0DC231 //A0data8 0x405ED72E0829AE02, 0x3C960C25157980EB //A1data8 0x40BCECC32EC22F9B, 0x3D5D8335A32F019C //A2data8 0x929EC2B1FB931F17, 0x00004012 //A3data8 0xD112EF96D37316DE, 0x00004018 //A4data8 0x9F00BB9BB13416AB, 0x0000401F //A5data8 0x425F7D8D5BDCB223 //A6data8 0x42C9A8D00C776CC6 //A7data8 0x433557FD8C481424 //A8data8 0x43A209221A953EF0 //A9data8 0x440EDC98D5618AB7 //A10data8 0x447AABD25E367378 //A11data8 0x44E73DE20CC3B288 //A12data8 0x455465257B4E0BD8 //A13data8 0x45C2011532085353 //A14data8 0x462FEE4CC191945B //A15data8 0x469C63AEEFEF0A7F //A16data8 0x4709D045390A3810 //A17data8 0x4778D360873C9F64 //A18data8 0x47E26965BE9A682A //A19// Polynomial coefficients for right root on [-7, -6]// Lgammal is aproximated by polynomial within [-.154582 ; .154521 ] rangedata8 0x3C75F103A1B00A48, 0x391C041C190C726D //A0data8 0x40869DE49E3AF2AA, 0x3D1C17E1F813063B //A1data8 0x410FCE23484CFD10, 0x3DB6F38C2F11DAB9 //A2data8 0xEF281D1E1BE2055A, 0x00004019 //A3data8 0xFCE3DA92AC55DFF8, 0x00004022 //A4data8 0x8E9EA838A20BD58E, 0x0000402C //A5data8 0x4354F21E2FB9E0C9 //A6data8 0x43E9500994CD4F09 //A7data8 0x447F3A2C23C033DF //A8data8 0x45139152656606D8 //A9data8 0x45A8D45F8D3BF2E8 //A10data8 0x463FD32110E5BFE5 //A11data8 0x46D490B3BDBAE0BE //A12data8 0x476AC3CAD905DD23 //A13data8 0x48018558217AD473 //A14data8 0x48970AF371D30585 //A15data8 0x492E6273A8BEFFE3 //A16data8 0x49C47CC9AE3F1073 //A17data8 0x4A5D38E8C35EFF45 //A18data8 0x4AF0123E89694CD8 //A19// Polynomial coefficients for right root on [-8, -7]// Lgammal is aproximated by polynomial within [-.154217 ; .154208 ] rangedata8 0xBCD2507D818DDD68, 0xB97F6940EA2871A0 //A0data8 0x40B3B407AA387BCB, 0x3D6320238F2C43D1 //A1data8 0x41683E85DAAFBAC7, 0x3E148D085958EA3A //A2data8 0x9F2A95AF1E10A548, 0x00004022 //A3data8 0x92F21522F482300E, 0x0000402E //A4data8 0x90B51AB03A1F244D, 0x0000403A //A5data8 0x44628E1C70EF534F //A6data8 0x452393E2BC32D244 //A7data8 0x45E5164141F4BA0B //A8data8 0x46A712B3A8AF5808 //A9data8 0x47698FD36CEDD0F2 //A10data8 0x482C9AE6BBAA3637 //A11data8 0x48F023821857C8E9 //A12data8 0x49B2569053FC106F //A13data8 0x4A74F646D5C1604B //A14data8 0x4B3811CF5ABA4934 //A15data8 0x4BFBB5DD6C84E233 //A16data8 0x4CC05021086F637B //A17data8 0x4D8450A345B0FB49 //A18data8 0x4E43825848865DB2 //A19// Polynomial coefficients for right root on [-9, -8]// Lgammal is aproximated by polynomial within [-.154160 ; .154158 ] rangedata8 0x3CDF4358564F2B46, 0x397969BEE6042F81 //A0data8 0x40E3B088FED67721, 0x3D82787BA937EE85 //A1data8 0x41C83A3893550EF4, 0x3E542ED57E244DA8 //A2data8 0x9F003C6DC56E0B8E, 0x0000402B //A3data8 0x92BDF64A3213A699, 0x0000403A //A4data8 0x9074F503AAD417AF, 0x00004049 //A5data8 0x4582843E1313C8CD //A6data8 0x467387BD6A7826C1 //A7data8 0x4765074E788CF440 //A8data8 0x4857004DD9D1E09D //A9data8 0x4949792ED7530EAF //A10data8 0x4A3C7F089A292ED3 //A11data8 0x4B30125BF0AABB86 //A12data8 0x4C224175195E307E //A13data8 0x4D14DC4C8B32C08D //A14data8 0x4E07F1DB2786197E //A15data8 0x4EFB8EA1C336DACB //A16data8 0x4FF03797EACD0F23 //A17data8 0x50E4304A8E68A730 //A18data8 0x51D3618FB2EC9F93 //A19// Polynomial coefficients for right root on [-10, -9]// Lgammal is aproximated by polynomial within [-.154152 ; .154152 ] rangedata8 0x3D42F34DA97ECF0C, 0x39FD1256F345B0D0 //A0data8 0x4116261203919787, 0x3DC12D44055588EB //A1data8 0x422EA8F32FB7FE99, 0x3ED849CE4E7B2D77 //A2data8 0xE25BAF73477A57B5, 0x00004034 //A3data8 0xEB021FD10060504A, 0x00004046 //A4data8 0x8220A208EE206C5F, 0x00004059 //A5data8 0x46B2C3903EC9DA14 //A6data8 0x47D64393744B9C67 //A7data8 0x48FAF79CCDC604DD //A8data8 0x4A20975DB8061EBA //A9data8 0x4B44AB9CBB38DB21 //A10data8 0x4C6A032F60094FE9 //A11data8 0x4D908103927634B4 //A12data8 0x4EB516CA21D30861 //A13data8 0x4FDB1BF12C58D318 //A14data8 0x510180AAE094A553 //A15data8 0x5226A8F2A2D45D57 //A16data8 0x534E00B6B0C8B809 //A17data8 0x5475022FE21215B2 //A18data8 0x5596B02BF6C5E19B //A19// Polynomial coefficients for right root on [-11, -10]// Lgammal is aproximated by polynomial within [-.154151 ; .154151 ] rangedata8 0x3D7AA9C2E2B1029C, 0x3A15FB37578544DB //A0data8 0x414BAF825A0C91D4, 0x3DFB9DA2CE398747 //A1data8 0x4297F3EC8AE0AF03, 0x3F34208B55FB8781 //A2data8 0xDD0C97D3197F56DE, 0x0000403E //A3data8 0x8F6F3AF7A5499674, 0x00004054 //A4data8 0xC68DA1AF6D878EEB, 0x00004069 //A5data8 0x47F1E4E1E2197CE0 //A6data8 0x494A8A28E597C3EB //A7data8 0x4AA4175D0D35D705 //A8data8 0x4BFEE6F0AF69E814 //A9data8 0x4D580FE7B3DBB3C6 //A10data8 0x4EB2ECE60E4608AF //A11data8 0x500E04BE3E2B4F24 //A12data8 0x5167F9450F0FB8FD //A13data8 0x52C342BDE747603F //A14data8 0x541F1699D557268C //A15data8 0x557927C5F079864E //A16data8 0x56D4D10FEEDB030C //A17data8 0x5832385DF86AD28A //A18data8 0x598898914B4D6523 //A19// Polynomial coefficients for right root on [-12, -11]// Lgammal is aproximated by polynomial within [-.154151 ; .154151 ] rangedata8 0xBD96F61647C58B03, 0xBA3ABB0C2A6C755B //A0data8 0x418308A82714B70D, 0x3E1088FC6A104C39 //A1data8 0x4306A493DD613C39, 0x3FB2341ECBF85741 //A2data8 0x8FA8FE98339474AB, 0x00004049 //A3data8 0x802CCDF570BA7942, 0x00004062 //A4data8 0xF3F748AF11A32890, 0x0000407A //A5data8 0x493E3B567EF178CF //A6data8 0x4ACED38F651BA362 //A7data8 0x4C600B357337F946 //A8data8 0x4DF0F71A52B54CCF //A9data8 0x4F8229F3B9FA2C70 //A10data8 0x5113A4C4979B770E //A11data8 0x52A56BC367F298D5 //A12data8 0x543785CF31842DC0 //A13data8 0x55C9FC37E3E40896 //A14data8 0x575CD5D1BA556C82 //A15data8 0x58F00A7AD99A9E08 //A16data8 0x5A824088688B008D //A17data8 0x5C15F75EF7E08EBD //A18data8 0x5DA462EA902F0C90 //A19// Polynomial coefficients for right root on [-13, -12]// Lgammal is aproximated by polynomial within [-.154151 ; .154151 ] rangedata8 0x3DC3191752ACFC9D, 0x3A26CB6629532DBF //A0data8 0x41BC8CFC051191BD, 0x3E68A84DA4E62AF2 //A1data8 0x43797926294A0148, 0x400F345FF3723CFF //A2data8 0xF26D2AF700B82625, 0x00004053 //A3data8 0xA238B24A4B1F7B15, 0x00004070 //A4data8 0xE793B5C0A41A264F, 0x0000408C //A5data8 0x4A9585BDDACE863D //A6data8 0x4C6075953448088A //A7data8 0x4E29B2F38D1FC670 //A8data8 0x4FF4619B079C440F //A9data8 0x51C05DAE118D8AD9 //A10data8 0x538A8C7F87326AD4 //A11data8 0x5555B6937588DAB3 //A12data8 0x5721E1F8B6E6A7DB //A13data8 0x58EDA1D7A77DD6E5 //A14data8 0x5AB8A9616B7DC9ED //A15data8 0x5C84942AA209ED17 //A16data8 0x5E518FC34C6F54EF //A17data8 0x601FB3F17BCCD9A0 //A18data8 0x61E61128D512FE97 //A1// Polynomial coefficients for right root on [-14, -13]// Lgammal is aproximated by polynomial within [-.154151 ; .154151 ] rangedata8 0xBE170D646421B3F5, 0xBAAD95F79FCB5097 //A0data8 0x41F7328CBFCD9AC7, 0x3E743B8B1E8AEDB1 //A1data8 0x43F0D0FA2DBDA237, 0x40A0422D6A227B55 //A2data8 0x82082DF2D32686CC, 0x0000405F //A3data8 0x8D64EE9B42E68B43, 0x0000407F //A4data8 0xA3FFD82E08C5F1F1, 0x0000409F //A5data8 0x4BF8C49D99123454 //A6data8 0x4DFEC79DDF11342F //A7data8 0x50038615A892F6BD //A8data8 0x520929453DB32EF1 //A9data8 0x54106A7808189A7F //A10data
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -