⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 libm_lgammal.s

📁 glibc 2.9,最新版的C语言库函数
💻 S
📖 第 1 页 / 共 5 页
字号:
data8 0xF5BE8B0B90325F20, 0x0000C000 // E3data8 0x877B275F3FB78DCA, 0x0000C000 // E1LOCAL_OBJECT_END(lgammal_half_3Q_data)LOCAL_OBJECT_START(lgammal_half_3Q_neg_data)// Polynomial coefficients for the lgammal(x), -0.75 < x <= -0.5data8 0xC014836EFD94899C, 0x3C9835679663B44F // A3, A0Ldata8 0xBFF276C7B4FB1875, 0xBC92D3D9FA29A1C0 // A1, A1Ldata8 0x40C5178F24E1A435, 0xC0D9DE84FBC5D76A // D0, D1data8 0x41D4D1B236BF6E93, 0xC1EBB0445CE58550 // C20, C21data8 0x4015718CD67F63D3, 0x3CC5354B6F04B59C // A2, A2Ldata8 0x3FF554493087E1ED, 0xBCB72715E37B02B9 // A0, A3Ldata8 0xE4AC7E915FA72229, 0x00004009 // E6data8 0xA28244206395FCC6, 0x00004007 // E4data8 0xFB045F19C07B2544, 0x00004004 // E2data8 0xE5C8A6E6A9BA7D7B, 0x00004002 // E0data8 0x4143943B55BF5118, 0xC158AC05EA675406 // D6, D7data8 0x4118F6833D19717C, 0xC12F51A6F375CC80 // D4, D5data8 0x40F00C209483481C, 0xC103F1DABF750259 // D2, D3data8 0x4191038F2D8F9E40, 0xC1A413066DA8AE4A // C18, C19data8 0x4170B537EDD833DE, 0xC1857E79424C61CE // C16, C17data8 0x8941D8AB4855DB73, 0x0000C00B // E7data8 0xBB822B131BD2E813, 0x0000C008 // E5data8 0x852B4C03B83D2D4F, 0x0000C006 // E3data8 0xC754CA7E2DDC0F1F, 0x0000C003 // E1LOCAL_OBJECT_END(lgammal_half_3Q_neg_data)LOCAL_OBJECT_START(lgammal_2Q_4_data)// Polynomial coefficients for the lgammal(x), 2.25 <= |x| < 4.0data8 0xBFCA4D55BEAB2D6F, 0x3C7ABC9DA14141F5 // A3, A0Ldata8 0x3FFD8773039049E7, 0x3C66CB7957A95BA4 // A1, A1Ldata8 0x3F45C3CC79E91E7D, 0xBF3A8E5005937E97 // D0, D1data8 0x3EC951E35E1C9203, 0xBEB030A90026C5DF // C20, C21data8 0x3FE94699894C1F4C, 0x3C91884D21D123F1 // A2, A2Ldata8 0x3FE62E42FEFA39EF, 0xBC66480CEB70870F // A0, A3Ldata8 0xF1C2EAFF0B3A7579, 0x00003FF5 // E6data8 0xB36AF863926B55A3, 0x00003FF7 // E4data8 0x9620656185BB44CA, 0x00003FF9 // E2data8 0xA264558FB0906AFF, 0x00003FFB // E0data8 0x3F03D59E9666C961, 0xBEF91115893D84A6 // D6, D7data8 0x3F19333611C46225, 0xBF0F89EB7D029870 // D4, D5data8 0x3F3055A96B347AFE, 0xBF243B5153E178A8 // D2, D3data8 0x3ED9A4AEF30C4BB2, 0xBED388138B1CEFF2 // C18, C19data8 0x3EEF7945A3C3A254, 0xBEE36F32A938EF11 // C16, C17data8 0x9028923F47C82118, 0x0000BFF5 // E7data8 0xCE0DAAFB6DC93B22, 0x0000BFF6 // E5data8 0xA0D0983B34AC4C8D, 0x0000BFF8 // E3data8 0x94D6C50FEB8B0CE7, 0x0000BFFA // E1LOCAL_OBJECT_END(lgammal_2Q_4_data)LOCAL_OBJECT_START(lgammal_4_8_data)// Polynomial coefficients for the lgammal(x), 4.0 <= |x| < 8.0data8 0xBFD6626BC9B31B54, 0x3CAA53C82493A92B // A3, A0Ldata8 0x401B4C420A50AD7C, 0x3C8C6E9929F789A3 // A1, A1Ldata8 0x3F49410427E928C2, 0xBF3E312678F8C146 // D0, D1data8 0x3ED51065F7CD5848, 0xBED052782A03312F // C20, C21data8 0x3FF735973273D5EC, 0x3C831DFC65BF8CCF // A2, A2Ldata8 0x401326643C4479C9, 0xBC6FA0498C5548A6 // A0, A3Ldata8 0x9382D8B3CD4EB7E3, 0x00003FF6 // E6data8 0xE9F92CAD8A85CBCD, 0x00003FF7 // E4data8 0xD58389FE38258CEC, 0x00003FF9 // E2data8 0x81310136363AE8AA, 0x00003FFC // E0data8 0x3F04F0AE38E78570, 0xBEF9E2144BB8F03C // D6, D7data8 0x3F1B5E992A6CBC2A, 0xBF10F3F400113911 // D4, D5data8 0x3F323EE00AAB7DEE, 0xBF2640FDFA9FB637 // D2, D3data8 0x3ED2143EBAFF067A, 0xBEBBDEB92D6FF35D // C18, C19data8 0x3EF173A42B69AAA4, 0xBEE78B9951A2EAA5 // C16, C17data8 0xAB3CCAC6344E52AA, 0x0000BFF5 // E7data8 0x81ACCB8915B16508, 0x0000BFF7 // E5data8 0xDA62C7221102C426, 0x0000BFF8 // E3data8 0xDF1BD44C4083580A, 0x0000BFFA // E1LOCAL_OBJECT_END(lgammal_4_8_data)LOCAL_OBJECT_START(lgammal_loc_min_data)// Polynomial coefficients for the lgammal(x), 1.3125 <= x < 1.5625data8 0xBB16C31AB5F1FB71, 0x00003FFF // xMin - point of local minimumdata8 0xBFC2E4278DC6BC23, 0xBC683DA8DDCA9650 // A3, A0Ldata8 0x3BD4DB7D0CA61D5F, 0x386E719EDD01D801 // A1, A1Ldata8 0x3F4CC72638E1D93F, 0xBF4228EC9953CCB9 // D0, D1data8 0x3ED222F97A04613E,0xBED3DDD58095CB6C  // C20, C21data8 0x3FDEF72BC8EE38AB, 0x3C863AFF3FC48940 // A2, A2Ldata8 0xBFBF19B9BCC38A41,  0xBC7425F1BFFC1442// A0, A3Ldata8 0x941890032BEB34C3, 0x00003FF6 // E6data8 0xC7E701591CE534BC, 0x00003FF7 // E4data8 0x93373CBD05138DD4, 0x00003FF9 // E2data8 0x845A14A6A81C05D6, 0x00003FFB // E0data8 0x3F0F6C4DF6D47A13, 0xBF045DCDB5B49E19 // D6, D7data8 0x3F22E23345DDE59C, 0xBF1851159AFB1735 // D4, D5data8 0x3F37101EA4022B78, 0xBF2D721E6323AF13 // D2, D3data8 0x3EE691EBE82DF09D, 0xBEDD42550961F730 // C18, C19data8 0x3EFA793EDE99AD85, 0xBEF14000108E70BE // C16, C17data8 0xB7CBC033ACE0C99C, 0x0000BFF5 // E7data8 0xF178D1F7B1A45E27, 0x0000BFF6 // E5data8 0xA8FCFCA8106F471C, 0x0000BFF8 // E3data8 0x864D46FA898A9AD2, 0x0000BFFA // E1LOCAL_OBJECT_END(lgammal_loc_min_data)LOCAL_OBJECT_START(lgammal_03Q_1Q_data)// Polynomial coefficients for the lgammal(x), 0.75 <= |x| < 1.3125data8 0x3FD151322AC7D848, 0x3C7184DE0DB7B4EE // A4, A2Ldata8 0x3FD9A4D55BEAB2D6, 0x3C9E934AAB10845F // A3, A1Ldata8 0x3FB111289C381259, 0x3FAFFFCFB32AE18D // D2, D3data8 0x3FB3B1D9E0E3E00D, 0x3FB2496F0D3768DF // D0, D1data8 0xBA461972C057D439, 0x00003FFB         // E6data8 0x3FEA51A6625307D3, 0x3C76ABC886A72DA2 // A2, A4Ldata8 0x3FA8EFE46B32A70E, 0x3F8F31B3559576B6 // C17, C20data8 0xE403383700387D85, 0x00003FFB // E4data8 0x9381D0EE74BF7251, 0x00003FFC // E2data8 0x3FAA2177A6D28177, 0x3FA4895E65FBD995 // C18, C19data8 0x3FAAED2C77DBEE5D, 0x3FA94CA59385512C // D6, D7data8 0x3FAE1F522E8A5941, 0x3FAC785EF56DD87E // D4, D5data8 0x3FB556AD5FA56F0A, 0x3FA81F416E87C783 // E7, C16data8 0xCD00F1C2DC2C9F1E, 0x00003FFB // E5data8 0x3FE2788CFC6FB618, 0x3C8E52519B5B17CB // A1, A3Ldata8 0x80859B57C3E7F241, 0x00003FFC // E3data8 0xADA065880615F401, 0x00003FFC // E1data8 0xD45CE0BD530AB50E, 0x00003FFC // E0LOCAL_OBJECT_END(lgammal_03Q_1Q_data)LOCAL_OBJECT_START(lgammal_13Q_2Q_data)// Polynomial coefficients for the lgammal(x), 1.5625 <= |x| < 2.25data8 0x3F951322AC7D8483, 0x3C71873D88C6539D // A4, A2Ldata8 0xBFB13E001A557606, 0x3C56CB907018A101 // A3, A1Ldata8 0xBEC11B2EC1E7F6FC, 0x3EB0064ED9824CC7 // D2, D3data8 0xBEE3CBC963EC103A, 0x3ED2597A330C107D // D0, D1data8 0xBC6F2DEBDFE66F38, 0x0000BFF0 // E6data8 0x3FD4A34CC4A60FA6, 0x3C3AFC9BF775E8A0 // A2, A4Ldata8 0x3E48B0C542F85B32, 0xBE347F12EAF787AB // C17, C20data8 0xE9FEA63B6984FA1E, 0x0000BFF2 // E4data8 0x9C562E15FC703BBF, 0x0000BFF5 // E2data8 0xBE3C12A50AB0355E, 0xBE1C941626AE4717 // C18, C19data8 0xBE7AFA8714342BC4,0x3E69A12D2B7761CB // D6, D7data8 0xBE9E25EF1D526730, 0x3E8C762291889B99 // D4, D5data8 0x3EF580DCEE754733, 0xBE57C811D070549C // E7, C16data8 0xD093D878BE209C98, 0x00003FF1 // E5data8 0x3FDB0EE6072093CE, 0xBC6024B9E81281C4 // A1, A3Ldata8 0x859B57C31CB77D96, 0x00003FF4 // E3data8 0xBD6EB756DB617E8D, 0x00003FF6 // E1data8 0xF2027E10C7AF8C38, 0x0000BFF7 // E0LOCAL_OBJECT_END(lgammal_13Q_2Q_data)LOCAL_OBJECT_START(lgammal_8_10_data)// Polynomial coefficients for the lgammal(x), 8.0 <= |x| < 10.0// Multi Precision termsdata8 0x40312008A3A23E5C, 0x3CE020B4F2E4083A //A1data8 0x4025358E82FCB70C, 0x3CD4A5A74AF7B99C //A0// Native precision termsdata8 0xF0AA239FFBC616D2, 0x00004000 //A2data8 0x96A8EA798FE57D66, 0x0000BFFF //A3data8 0x8D501B7E3B9B9BDB, 0x00003FFE //A4data8 0x9EE062401F4B1DC2, 0x0000BFFD //A5data8 0xC63FD8CD31E93431, 0x00003FFC //A6data8 0x8461101709C23C30, 0x0000BFFC //A7data8 0xB96D7EA7EF3648B2, 0x00003FFB //A8data8 0x86886759D2ACC906, 0x0000BFFB //A9data8 0xC894B6E28265B183, 0x00003FFA //A10data8 0x98C4348CAD821662, 0x0000BFFA //A11data8 0xEC9B092226A94DF2, 0x00003FF9 //A12data8 0xB9F169FF9B98CDDC, 0x0000BFF9 //A13data8 0x9A3A32BB040894D3, 0x00003FF9 //A14data8 0xF9504CCC1003B3C3, 0x0000BFF8 //A15LOCAL_OBJECT_END(lgammal_8_10_data)LOCAL_OBJECT_START(lgammal_03Q_6_data)// Polynomial coefficients for the lgammal(x), 0.75 <= |x| < 1.0data8 0xBFBC47DCA479E295, 0xBC607E6C1A379D55 //A3data8 0x3FCA051C372609ED, 0x3C7B02D73EB7D831 //A0data8 0xBFE15FAFA86B04DB, 0xBC3F52EE4A8945B5 //A1data8 0x3FD455C4FF28F0BF, 0x3C75F8C6C99F30BB //A2data8 0xD2CF04CD934F03E1, 0x00003FFA //A4data8 0xDB4ED667E29256E1, 0x0000BFF9 //A5data8 0xF155A33A5B6021BF, 0x00003FF8 //A6data8 0x895E9B9D386E0338, 0x0000BFF8 //A7data8 0xA001BE94B937112E, 0x00003FF7 //A8data8 0xBD82846E490ED048, 0x0000BFF6 //A9data8 0xE358D24EC30DBB5D, 0x00003FF5 //A10data8 0x89C4F3652446B78B, 0x0000BFF5 //A11data8 0xA86043E10280193D, 0x00003FF4 //A12data8 0xCF3A2FBA61EB7682, 0x0000BFF3 //A13data8 0x3F300900CC9200EC //A14data8 0xBF23F42264B94AE8 //A15data8 0x3F18EEF29895FE73 //A16data8 0xBF0F3C4563E3EDFB //A17data8 0x3F0387DBBC385056 //A18data8 0xBEF81B4004F92900 //A19data8 0x3EECA6692A9A5B81 //A20data8 0xBEDF61A0059C15D3 //A21data8 0x3ECDA9F40DCA0111 //A22data8 0xBEB60FE788217BAF //A23data8 0x3E9661D795DFC8C6 //A24data8 0xBE66C7756A4EDEE5 //A25// Polynomial coefficients for the lgammal(x), 1.0 <= |x| < 2.0data8 0xBFC1AE55B180726B, 0xBC7DE1BC478453F5 //A3data8 0xBFBEEB95B094C191, 0xBC53456FF6F1C9D9 //A0data8 0x3FA2AED059BD608A, 0x3C0B65CC647D557F //A1data8 0x3FDDE9E64DF22EF2, 0x3C8993939A8BA8E4 //A2data8 0xF07C206D6B100CFF, 0x00003FFA //A4data8 0xED2CEA9BA52FE7FB, 0x0000BFF9 //A5data8 0xFCE51CED52DF3602, 0x00003FF8 //A6data8 0x8D45D27872326619, 0x0000BFF8 //A7data8 0xA2B78D6BCEBE27F7, 0x00003FF7 //A8data8 0xBF6DC0996A895B6F, 0x0000BFF6 //A9data8 0xE4B9AD335AF82D79, 0x00003FF5 //A10data8 0x8A451880195362A1, 0x0000BFF5 //A11data8 0xA8BE35E63089A7A9, 0x00003FF4 //A12data8 0xCF7FA175FA11C40C, 0x0000BFF3 //A13data8 0x3F300C282FAA3B02 //A14data8 0xBF23F6AEBDA68B80 //A15data8 0x3F18F6860E2224DD //A16data8 0xBF0F542B3CE32F28 //A17data8 0x3F039436218C9BF8 //A18data8 0xBEF8AE6307677AEC //A19data8 0x3EF0B55527B3A211 //A20data8 0xBEE576AC995E7605 //A21data8 0x3ED102DDC1365D2D //A22data8 0xBEC442184F97EA54 //A23data8 0x3ED4D2283DFE5FC6 //A24data8 0xBECB9219A9B46787 //A25// Polynomial coefficients for the lgammal(x), 2.0 <= |x| < 3.0data8 0xBFCA4D55BEAB2D6F, 0xBC66F80E5BFD5AF5 //A3data8 0x3FE62E42FEFA39EF, 0x3C7ABC9E3B347E3D //A0data8 0x3FFD8773039049E7, 0x3C66CB9007C426EA //A1data8 0x3FE94699894C1F4C, 0x3C918726EB111663 //A2data8 0xA264558FB0906209, 0x00003FFB //A4data8 0x94D6C50FEB902ADC, 0x0000BFFA //A5data8 0x9620656184243D17, 0x00003FF9 //A6data8 0xA0D0983B8BCA910B, 0x0000BFF8 //A7data8 0xB36AF8559B222BD3, 0x00003FF7 //A8data8 0xCE0DACB3260AE6E5, 0x0000BFF6 //A9data8 0xF1C2C0BF0437C7DB, 0x00003FF5 //A10data8 0x902A2F2F3AB74A92, 0x0000BFF5 //A11data8 0xAE05009B1B2C6E4C, 0x00003FF4 //A12data8 0xD5B71F6456D7D4CB, 0x0000BFF3 //A13data8 0x3F2F0351D71BC9C6 //A14data8 0xBF2B53BC56A3B793 //A15data8 0xBF18B12DC6F6B861 //A16data8 0xBF43EE6EB5215C2F //A17data8 0xBF5474787CDD455E //A18data8 0xBF642B503C9C060A //A19data8 0xBF6E07D1AA254AA3 //A20data8 0xBF71C785443AAEE8 //A21data8 0xBF6F67BF81B71052 //A22data8 0xBF63E4BCCF4FFABF //A23data8 0xBF50067F8C671D5A //A24data8 0xBF29C770D680A5AC //A25// Polynomial coefficients for the lgammal(x), 4.0 <= |x| < 6.0data8 0xBFD6626BC9B31B54, 0xBC85AABE08680902 //A3data8 0x401326643C4479C9, 0x3CAA53C26F31E364 //A0data8 0x401B4C420A50AD7C, 0x3C8C76D55E57DD8D //A1data8 0x3FF735973273D5EC, 0x3C83A0B78E09188A //A2data8 0x81310136363AAB6D, 0x00003FFC //A4data8 0xDF1BD44C4075C0E6, 0x0000BFFA //A5data8 0xD58389FE38D8D664, 0x00003FF9 //A6data8 0xDA62C7221D5B5F87, 0x0000BFF8 //A7data8 0xE9F92CAD0263E157, 0x00003FF7 //A8data8 0x81ACCB8606C165FE, 0x0000BFF7 //A9data8 0x9382D8D263D1C2A3, 0x00003FF6 //A10data8 0xAB3CCBA4C853B12C, 0x0000BFF5 //A11data8 0xCA0818BBCCC59296, 0x00003FF4 //A12data8 0xF18912691CBB5BD0, 0x0000BFF3 //A13data8 0x3F323EF5D8330339 //A14data8 0xBF2641132EA571F7 //A15data8 0x3F1B5D9576175CA9 //A16data8 0xBF10F56A689C623D //A17data8 0x3F04CACA9141A18D //A18data8 0xBEFA307AC9B4E85D //A19data8 0x3EF4B625939FBE32 //A20data8 0xBECEE6AC1420F86F //A21data8 0xBE9A95AE2E485964 //A22data8 0xBF039EF47F8C09BB //A23data8 0xBF05345957F7B7A9 //A24data8 0xBEF85AE6385D4CCC //A25// Polynomial coefficients for the lgammal(x), 3.0 <= |x| < 4.0data8 0xBFCA4D55BEAB2D6F, 0xBC667B20FF46C6A8 //A3data8 0x3FE62E42FEFA39EF, 0x3C7ABC9E3B398012 //A0data8 0x3FFD8773039049E7, 0x3C66CB9070238D77 //A1data8 0x3FE94699894C1F4C, 0x3C91873D8839B1CD //A2data8 0xA264558FB0906D7E, 0x00003FFB //A4data8 0x94D6C50FEB8AFD72, 0x0000BFFA //A5data8 0x9620656185B68F14, 0x00003FF9 //A6data8 0xA0D0983B34B7088A, 0x0000BFF8 //A7data8 0xB36AF863964AA440, 0x00003FF7 //A8data8 0xCE0DAAFB5497AFB8, 0x0000BFF6 //A9data8 0xF1C2EAFA79CC2864, 0x00003FF5 //A10data8 0x9028922A839572B8, 0x0000BFF5 //A11data8 0xAE1E62F870BA0278, 0x00003FF4 //A12data8 0xD4726F681E2ABA29, 0x0000BFF3 //A13data8 0x3F30559B9A02FADF //A14data8 0xBF243ADEB1266CAE //A15data8 0x3F19303B6F552603 //A16data8 0xBF0F768C288EC643 //A17data8 0x3F039D5356C21DE1 //A18data8 0xBEF81BCA8168E6BE //A19data8 0x3EEC74A53A06AD54 //A20data8 0xBEDED52D1A5DACDF //A21data8 0x3ECCB4C2C7087342 //A22data8 0xBEB4F1FAFDFF5C2F //A23data8 0x3E94C80B52D58904 //A24data8 0xBE64A328CBE92A27 //A25LOCAL_OBJECT_END(lgammal_03Q_6_data)LOCAL_OBJECT_START(lgammal_1pEps_data)// Polynomial coefficients for the lgammal(x), 1 - 2^(-7) <= |x| < 1 + 2^(-7)data8 0x93C467E37DB0C7A5, 0x00003FFE //A1data8 0xD28D3312983E9919, 0x00003FFE //A2data8 0xCD26AADF559A47E3, 0x00003FFD //A3data8 0x8A8991563EC22E81, 0x00003FFD //A4data8 0x3FCA8B9C168D52FE //A5data8 0x3FC5B40CB0696370 //A6data8 0x3FC270AC2229A65D //A7data8 0x3FC0110AF10FCBFC //A8// Polynomial coefficients for the log1p(x), - 2^(-7) <= |x| <  2^(-7)data8 0x3FBC71C71C71C71C //P8data8 0xBFC0000000000000 //P7data8 0x3FC2492492492492 //P6data8 0xBFC5555555555555 //P5data8 0x3FC999999999999A //P4data8 0xBFD0000000000000 //P3data8 0x3FD5555555555555 //P2

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -