📄 mtve.m
字号:
function [x50,x,TX,CX]=MTVE(X, max_fits, max_points)
% % MTVE: Calculates the Minimum Trimmed Vulume Ellipsoid (MTVE) of a data set X.
% %
% % Syntax;
% %
% % [x50,x,TX,CX]=MTVE(X, max_fits, max_points);
% %
% % **********************************************************************
% %
% % Description
% %
% % Calculates the Minimum Trimmed Vulume Ellipsoid (MTVE) of a data set X.
% %
% % This program is a modification of MVE. It has been modified to
% % trim the input data sets and trim the number of combinations of
% % line fits that are processed. The trimming allows the program to
% % accomodate large data sets.
% %
% % This program performs the Least Median Trimmed Squares Robust
% % Regression for simple or multiple columns of data and outputs the
% % regression parameters.
% %
% % **********************************************************************
% %
% % Input Variable Description
% %
% % X is the matrix of the data set.
% %
% % max_fits is the number of best fit pairs of data.
% % The maximum value is 10000.
% % The default value is 1000 or the largest value allowed.
% %
% % max_points is the number of data points for curve fitting.
% % The maximum value is 100000.
% % The default value is 100000 or the largest value allowed.
% %
% % **********************************************************************
% %
% % Output Variable Description
% %
% % x50 is the 50% of the points that form the MTVE.
% %
% % x is the core subsample for the MTVE.
% %
% % TX is the center of the MTVE.
% %
% % CX is the inflated covariance matrix of the MTVE.
% %
% % **********************************************************************
% %
% % Reference:
% % Rousseeuw PJ, Leroy AM (1987): Robust regression and outlier detection. Wiley.
% %
% % **********************************************************************
% %
% % This program is originally the work of
% %
% % Alexandros Leontitsis
% % Institute of Mathematics and Statistics
% % University of Kent at Canterbury
% % Canterbury
% % Kent, CT2 7NF
% % U.K.
% %
% % University e-mail: al10@ukc.ac.uk (until December 2002)
% % Lifetime e-mail: leoaleq@yahoo.com
% % Homepage: http://www.geocities.com/CapeCanaveral/Lab/1421
% %
% % Sep 3, 2001.
% %
% % ***********************************************************
% %
% % This program was modified by Edward L. Zechmann
% %
% % modified 14 February 2008 Trimmed the input data arrays
% % Updated comments.
% % Improved the error handling and default
% % values.
% %
% % modified 2 December 2008 Fixed a bug in trimming the input data
% % arrays. This fix improves accuracy
% % for data sets with less than 1000
% % points.
% %
% %
% %
% % **********************************************************************
% %
% % Feel free to modify this code.
% %
% % See also: MVE, LMSpolor, LMTSpol, LMSpol, LMTSreg, LMSreg, LMTSregor, LMSregor
% %
flag=0;
if nargin < 1 || isempty(X) || ~isnumeric(X)
warning('Not enough input arguments. Return empty array.');
flag=1;
else
% X must be 2-dimensional
if ndims(X) > 2
warning('Invalid data set. Return empty array.');
flag=1;
end
% n is the length of the data set, p is its dimension
[n p]=size(X);
end
if n < p
warning('You must give a larger data set. Return empty array.');
flag=1;
end
if flag == 1
x50=[];
x=[];
TX=[];
CX=[];
else
pp=size(X,2);
% If not input, set the maximum number of fits
if nargin < 2 || isempty(max_fits) || ~isnumeric(max_fits)
% default value of max_fits is 1000
max_fits=min([1000, nchoosek(n, pp+1)]);
end
% make sure that max_fits does not exceed 10000
max_fits=min( [max_fits, nchoosek(n, pp+1), 10000]);
% If max_points is not an input, set the maximum number of points
% for the input arrays X and y to a reasonable value.
if nargin < 3 || isempty(max_points) || ~isnumeric(max_points)
max_points=max([min([n, 100000]), max_fits*(pp+1)]);
end
if max_points < max_fits
max_points=max_fits;
end
% Program Modified Here
% input data is trimmed
% best fit combinations are trimmed
y=X;
[C, y, X, n, p]=LMS_trim(y, X, max_fits, max_points, 1);
volmin=Inf;
for i=1:size(C,1);
for j=1:p+1
A(j,:)=X(C(i,j),:);
end
if rank(A)==p
%Chapter 7, eq. 1.23
Cj=cov(A);
%Chapter 7, eq. 1.24
for j=1:n
fact(j)=(X(j,:)-mean(A))*inv(Cj)*(X(j,:)-mean(A))';
end
mj2=median(fact);
mj=sqrt(mj2);
% Chapter 7, eq. 1.25 - The objective function
vol=sqrt(det(Cj))*mj^(p-1);
if vol<volmin
volmin=vol;
% Chapter 7, eq. 1.26 - MVE
TX=mean(A);
CX=mj2*Cj/chi2inv(0.5,p);
% The core of the MVE
x=A;
% The 50% of the points contained in the MVE
k=0;
x50=[];
for j=1:n
if fact(j)<=mj2
k=k+1;
x50(k,:)=X(j,:);
end
end
end
end
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -