⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 strictmath.java

📁 this gcc-g++-3.3.1.tar.gz is a source file of gcc, you can learn more about gcc through this codes f
💻 JAVA
📖 第 1 页 / 共 4 页
字号:
      {        if (y < 0)          ax = 1 / ax;        if (x < 0)          {            if (x == -1 && yisint == 0)              ax = Double.NaN;            else if (yisint == 1)              ax = -ax;          }        return ax;      }    if (x < 0 && yisint == 0)      return Double.NaN;    // Now we can start!    double t;    double t1;    double t2;    double u;    double v;    double w;    if (ay > TWO_31)      {        if (ay > TWO_64) // Automatic over/underflow.          return ((ax < 1) ? y < 0 : y > 0) ? Double.POSITIVE_INFINITY : 0;        // Over/underflow if x is not close to one.        if (ax < 0.9999995231628418)          return y < 0 ? Double.POSITIVE_INFINITY : 0;        if (ax >= 1.0000009536743164)          return y > 0 ? Double.POSITIVE_INFINITY : 0;        // Now |1-x| is <= 2**-20, sufficient to compute        // log(x) by x-x^2/2+x^3/3-x^4/4.        t = x - 1;        w = t * t * (0.5 - t * (1 / 3.0 - t * 0.25));        u = INV_LN2_H * t;        v = t * INV_LN2_L - w * INV_LN2;        t1 = (float) (u + v);        t2 = v - (t1 - u);      }    else    {      long bits = Double.doubleToLongBits(ax);      int exp = (int) (bits >> 52);      if (exp == 0) // Subnormal x.        {          ax *= TWO_54;          bits = Double.doubleToLongBits(ax);          exp = (int) (bits >> 52) - 54;        }      exp -= 1023; // Unbias exponent.      ax = Double.longBitsToDouble((bits & 0x000fffffffffffffL)                                   | 0x3ff0000000000000L);      boolean k;      if (ax < SQRT_1_5)  // |x|<sqrt(3/2).        k = false;      else if (ax < SQRT_3) // |x|<sqrt(3).        k = true;      else        {          k = false;          ax *= 0.5;          exp++;        }      // Compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5).      u = ax - (k ? 1.5 : 1);      v = 1 / (ax + (k ? 1.5 : 1));      double s = u * v;      double s_h = (float) s;      double t_h = (float) (ax + (k ? 1.5 : 1));      double t_l = ax - (t_h - (k ? 1.5 : 1));      double s_l = v * ((u - s_h * t_h) - s_h * t_l);      // Compute log(ax).      double s2 = s * s;      double r = s_l * (s_h + s) + s2 * s2        * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));      s2 = s_h * s_h;      t_h = (float) (3.0 + s2 + r);      t_l = r - (t_h - 3.0 - s2);      // u+v = s*(1+...).      u = s_h * t_h;      v = s_l * t_h + t_l * s;      // 2/(3log2)*(s+...).      double p_h = (float) (u + v);      double p_l = v - (p_h - u);      double z_h = CP_H * p_h;      double z_l = CP_L * p_h + p_l * CP + (k ? DP_L : 0);      // log2(ax) = (s+..)*2/(3*log2) = exp + dp_h + z_h + z_l.      t = exp;      t1 = (float) (z_h + z_l + (k ? DP_H : 0) + t);      t2 = z_l - (t1 - t - (k ? DP_H : 0) - z_h);    }    // Split up y into y1+y2 and compute (y1+y2)*(t1+t2).    boolean negative = x < 0 && yisint == 1;    double y1 = (float) y;    double p_l = (y - y1) * t1 + y * t2;    double p_h = y1 * t1;    double z = p_l + p_h;    if (z >= 1024) // Detect overflow.      {        if (z > 1024 || p_l + OVT > z - p_h)          return negative ? Double.NEGATIVE_INFINITY            : Double.POSITIVE_INFINITY;      }    else if (z <= -1075) // Detect underflow.      {        if (z < -1075 || p_l <= z - p_h)          return negative ? -0.0 : 0;      }    // Compute 2**(p_h+p_l).    int n = round((float) z);    p_h -= n;    t = (float) (p_l + p_h);    u = t * LN2_H;    v = (p_l - (t - p_h)) * LN2 + t * LN2_L;    z = u + v;    w = v - (z - u);    t = z * z;    t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));    double r = (z * t1) / (t1 - 2) - (w + z * w);    z = scale(1 - (r - z), n);    return negative ? -z : z;  }  /**   * Get the IEEE 754 floating point remainder on two numbers. This is the   * value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest   * double to <code>x / y</code> (ties go to the even n); for a zero   * remainder, the sign is that of <code>x</code>. If either argument is NaN,   * the first argument is infinite, or the second argument is zero, the result   * is NaN; if x is finite but y is infinte, the result is x.   *   * @param x the dividend (the top half)   * @param y the divisor (the bottom half)   * @return the IEEE 754-defined floating point remainder of x/y   * @see #rint(double)   */  public static double IEEEremainder(double x, double y)  {    // Purge off exception values.    if (x == Double.NEGATIVE_INFINITY || ! (x < Double.POSITIVE_INFINITY)        || y == 0 || y != y)      return Double.NaN;    boolean negative = x < 0;    x = abs(x);    y = abs(y);    if (x == y || x == 0)      return 0 * x; // Get correct sign.    // Achieve x < 2y, then take first shot at remainder.    if (y < TWO_1023)      x %= y + y;    // Now adjust x to get correct precision.    if (y < 4 / TWO_1023)      {        if (x + x > y)          {            x -= y;            if (x + x >= y)              x -= y;          }      }    else      {        y *= 0.5;        if (x > y)          {            x -= y;            if (x >= y)              x -= y;          }      }    return negative ? -x : x;  }  /**   * Take the nearest integer that is that is greater than or equal to the   * argument. If the argument is NaN, infinite, or zero, the result is the   * same; if the argument is between -1 and 0, the result is negative zero.   * Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.   *   * @param a the value to act upon   * @return the nearest integer &gt;= <code>a</code>   */  public static double ceil(double a)  {    return -floor(-a);  }  /**   * Take the nearest integer that is that is less than or equal to the   * argument. If the argument is NaN, infinite, or zero, the result is the   * same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.   *   * @param a the value to act upon   * @return the nearest integer &lt;= <code>a</code>   */  public static double floor(double a)  {    double x = abs(a);    if (! (x < TWO_52) || (long) a == a)      return a; // No fraction bits; includes NaN and infinity.    if (x < 1)      return a >= 0 ? 0 * a : -1; // Worry about signed zero.    return a < 0 ? (long) a - 1.0 : (long) a; // Cast to long truncates.  }  /**   * Take the nearest integer to the argument.  If it is exactly between   * two integers, the even integer is taken. If the argument is NaN,   * infinite, or zero, the result is the same.   *   * @param a the value to act upon   * @return the nearest integer to <code>a</code>   */  public static double rint(double a)  {    double x = abs(a);    if (! (x < TWO_52))      return a; // No fraction bits; includes NaN and infinity.    if (x <= 0.5)      return 0 * a; // Worry about signed zero.    if (x % 2 <= 0.5)      return (long) a; // Catch round down to even.    return (long) (a + (a < 0 ? -0.5 : 0.5)); // Cast to long truncates.  }  /**   * Take the nearest integer to the argument.  This is equivalent to   * <code>(int) Math.floor(f + 0.5f)</code>. If the argument is NaN, the   * result is 0; otherwise if the argument is outside the range of int, the   * result will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.   *   * @param f the argument to round   * @return the nearest integer to the argument   * @see Integer#MIN_VALUE   * @see Integer#MAX_VALUE   */  public static int round(float f)  {    return (int) floor(f + 0.5f);  }  /**   * Take the nearest long to the argument.  This is equivalent to   * <code>(long) Math.floor(d + 0.5)</code>. If the argument is NaN, the   * result is 0; otherwise if the argument is outside the range of long, the   * result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.   *   * @param d the argument to round   * @return the nearest long to the argument   * @see Long#MIN_VALUE   * @see Long#MAX_VALUE   */  public static long round(double d)  {    return (long) floor(d + 0.5);  }  /**   * Get a random number.  This behaves like Random.nextDouble(), seeded by   * System.currentTimeMillis() when first called. In other words, the number   * is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).   * This random sequence is only used by this method, and is threadsafe,   * although you may want your own random number generator if it is shared   * among threads.   *   * @return a random number   * @see Random#nextDouble()   * @see System#currentTimeMillis()   */  public static synchronized double random()  {    if (rand == null)      rand = new Random();    return rand.nextDouble();  }  /**   * Convert from degrees to radians. The formula for this is   * radians = degrees * (pi/180); however it is not always exact given the   * limitations of floating point numbers.   *   * @param degrees an angle in degrees   * @return the angle in radians   */  public static double toRadians(double degrees)  {    return degrees * (PI / 180);  }  /**   * Convert from radians to degrees. The formula for this is   * degrees = radians * (180/pi); however it is not always exact given the   * limitations of floating point numbers.   *   * @param rads an angle in radians   * @return the angle in degrees   */  public static double toDegrees(double rads)  {    return rads * (180 / PI);  }  /**   * Constants for scaling and comparing doubles by powers of 2. The compiler   * must automatically inline constructs like (1/TWO_54), so we don't list   * negative powers of two here.   */  private static final double    TWO_16 = 0x10000, // Long bits 0x40f0000000000000L.    TWO_20 = 0x100000, // Long bits 0x4130000000000000L.    TWO_24 = 0x1000000, // Long bits 0x4170000000000000L.    TWO_27 = 0x8000000, // Long bits 0x41a0000000000000L.    TWO_28 = 0x10000000, // Long bits 0x41b0000000000000L.    TWO_29 = 0x20000000, // Long bits 0x41c0000000000000L.    TWO_31 = 0x80000000L, // Long bits 0x41e0000000000000L.    TWO_49 = 0x2000000000000L, // Long bits 0x4300000000000000L.    TWO_52 = 0x10000000000000L, // Long bits 0x4330000000000000L.    TWO_54 = 0x40000000000000L, // Long bits 0x4350000000000000L.    TWO_57 = 0x200000000000000L, // Long bits 0x4380000000000000L.    TWO_60 = 0x1000000000000000L, // Long bits 0x43b0000000000000L.    TWO_64 = 1.8446744073709552e19, // Long bits 0x43f0000000000000L.    TWO_66 = 7.378697629483821e19, // Long bits 0x4410000000000000L.    TWO_1023 = 8.98846567431158e307; // Long bits 0x7fe0000000000000L.  /**   * Super precision for 2/pi in 24-bit chunks, for use in   * {@link #remPiOver2()}.   */  private static final int TWO_OVER_PI[] = {    0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62,    0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a,    0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129,    0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41,    0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8,    0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf,    0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5,    0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08,    0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3,    0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880,    0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b,  };  /**   * Super precision for pi/2 in 24-bit chunks, for use in   * {@link #remPiOver2()}.   */  private static final double PI_OVER_TWO[] = {    1.570796251296997, // Long bits 0x3ff921fb40000000L.    7.549789415861596e-8, // Long bits 0x3e74442d00000000L.    5.390302529957765e-15, // Long bits 0x3cf8469880000000L.    3.282003415807913e-22, // Long bits 0x3b78cc5160000000L.    1.270655753080676e-29, // Long bits 0x39f01b8380000000L.    1.2293330898111133e-36, // Long bits 0x387a252040000000L.    2.7337005381646456e-44, // Long bits 0x36e3822280000000L.    2.1674168387780482e-51, // Long bits 0x3569f31d00000000L.  };  /**   * More constants related to pi, used in {@link #remPiOver2()} and   * elsewhere.   */  private static final double    PI_L = 1.2246467991473532e-16, // Long bits 0x3ca1a62633145c07L.    PIO2_1 = 1.5707963267341256, // Long bits 0x3ff921fb54400000L.    PIO2_1L = 6.077100506506192e-11, // Long bits 0x3dd0b4611a626331L.    PIO2_2 = 6.077100506303966e-11, // Long bits 0x3dd0b4611a600000L.    PIO2_2L = 2.0222662487959506e-21, // Long bits 0x3ba3198a2e037073L.    PIO2_3 = 2.0222662487111665e-21, // Long bits 0x3ba3198a2e000000L.    PIO2_3L = 8.4784276603689e-32; // Long bits 0x397b839a252049c1L.  /**   * Natural log and square root constants, for calculation of   * {@link #exp(double)}, {@link #log(double)} and   * {@link #power(double, double)}. CP is 2/(3*ln(2)).   */  private static final double    SQRT_1_5 = 1.224744871391589, // Long bits 0x3ff3988e1409212eL.    SQRT_2 = 1.4142135623730951, // Long bits 0x3ff6a09e667f3bcdL.    SQRT_3 = 1.7320508075688772, // Long bits 0x3ffbb67ae8584caaL.    EXP_LIMIT_H = 709.782712893384, // Long bits 0x40862e42fefa39efL.    EXP_LIMIT_L = -745.1332191019411, // Long bits 0xc0874910d52d3051L.    CP = 0.9617966939259756, // Long bits 0x3feec709dc3a03fdL.    CP_H = 0.9617967009544373, // Long bits 0x3feec709e0000000L.    CP_L = -7.028461650952758e-9, // Long bits 0xbe3e2fe0145b01f5L.    LN2 = 0.6931471805599453, // Long bits 0x3fe62e42fefa39efL.    LN2_H = 0.6931471803691238, // Long bits 0x3fe62e42fee00000L.    LN2_L = 1.9082149292705877e-10, // Long bits 0x3dea39ef35793c76L.    INV_LN2 = 1.4426950408889634, // Long bits 0x3ff71547652b82feL.    INV_LN2_H = 1.4426950216293335, // Long bits 0x3ff7154760000000L.    INV_LN2_L = 1.9259629911266175e-8; // Long bits 0x3e54ae0bf85ddf44L.  /**   * Constants for computing {@link #log(double)}.   */  private static final double    LG1 = 0.6666666666666735, // Long bits 0x3fe5555555555593L.    LG2 = 0.3999999999940942, // Long bits 0x3fd999999997fa04L.    LG3 = 0.2857142874366239, // Long bits 0x3fd2492494229359L.    LG4 = 0.22222198432149784, // Long bits 0x3fcc71c51d8e78afL.    LG5 = 0.1818357216161805, // Long bits 0x3fc7466496cb03deL.    LG6 = 0.15313837699209373, // Long bits 0x3fc39a09d078c69fL.    LG7 = 0.14798198605116586; // Long bits 0x3fc2f112df3e5244L.  /**   * Constants for computing {@link #pow(double, double)}. L and P are   * coefficients for series; OVT is -(1024-log2(ovfl+.5ulp)); and DP is ???.   * The P coefficients also calculate {@link #exp(double)}.   */  private static final double    L1 = 0.5999999999999946, // Long bits 0x3fe3333333333303L.    L2 = 0.4285714285785502, // Long bits 0x3fdb6db6db6fabffL.    L3 = 0.33333332981837743, // Long bits 0x3fd55555518f264dL.    L4 = 0.272728123808534, // Long bits 0x3fd17460a91d4101L.    L5 = 0.23066074577556175, // Long bits 0x3fcd864a93c9db65L.    L6 = 0.20697501780033842, // Long bits 0x3fca7e284a454eefL.    P1 = 0.16666666666666602, // Long bits 0x3fc555555555553eL.    P2 = -2.7777777777015593e-3, // Long bits 0xbf66c16c16bebd93L.    P3 = 6.613756321437934e-5, // Long bits 0x3f11566aaf25de2cL.    P4 = -1.6533902205465252e-6, // Long bits 0xbebbbd41c5d26bf1L.    P5 = 4.1381367970572385e-8, // Long bits 0x3e66376972bea4d0L.    DP_H = 0.5849624872207642, // Long bits 0x3fe2b80340000000L.    DP_L = 1.350039202129749e-8, // Long bits 0x3e4cfdeb43cfd006L.    OVT = 8.008566259537294e-17; // Long bits 0x3c971547652b82feL.  /**   * Coefficients for computing {@link #sin(double)}.   */  private static final double    S1 = -0.16666666666666632, // Long bits 0xbfc5555555555549L.    S2 = 8.33333333332249e-3, // Long bits 0x3f8111111110f8a6L.    S3 = -1.984126982985795e-4, // Long bits 0xbf2a01a019c161d5L.    S4 = 2.7557313707070068e-6, // Long bits 0x3ec71de357b1fe7dL.    S5 = -2.5050760253406863e-8, // Long bits 0xbe5ae5e68a2b9cebL.    S6 = 1.58969099521155e-10; // Long bits 0x3de5d93a5acfd57cL.  /**   * Coefficients for computing {@link #cos(double)}.   */  private static final double    C1 = 0.0416666666666666, // Long bits 0x3fa555555555554cL.    C2 = -1.388888888887411e-3, // Long bits 0xbf56c16c16c15177L.    C3 = 2.480158728947673e-5, // Long bits 0x3efa01a019cb1590L.    C4 = -2.7557314351390663e-7, // Long bits 0xbe927e4f809c52adL.    C5 = 2.087572321298175e-9, // Long bits 0x3e21ee9ebdb4b1c4L.    C6 = -1.1359647557788195e-11; // Long bits 0xbda8fae9be8838d4L.  /**   * Coefficients for computing {@link #tan(double)}.   */  private static final double    T0 = 0.3333333333333341, // Long bits 0x3fd5555555555563L.    T1 = 0.13333333333320124, // Long bits 0x3fc111111110fe7aL.    T2 = 0.05396825397622605, // Long bits 0x3faba1ba1bb341feL.    T3 = 0.021869488294859542, // Long bits 0x3f9664f48406d637L.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -