📄 strictmath.java
字号:
{ if (y < 0) ax = 1 / ax; if (x < 0) { if (x == -1 && yisint == 0) ax = Double.NaN; else if (yisint == 1) ax = -ax; } return ax; } if (x < 0 && yisint == 0) return Double.NaN; // Now we can start! double t; double t1; double t2; double u; double v; double w; if (ay > TWO_31) { if (ay > TWO_64) // Automatic over/underflow. return ((ax < 1) ? y < 0 : y > 0) ? Double.POSITIVE_INFINITY : 0; // Over/underflow if x is not close to one. if (ax < 0.9999995231628418) return y < 0 ? Double.POSITIVE_INFINITY : 0; if (ax >= 1.0000009536743164) return y > 0 ? Double.POSITIVE_INFINITY : 0; // Now |1-x| is <= 2**-20, sufficient to compute // log(x) by x-x^2/2+x^3/3-x^4/4. t = x - 1; w = t * t * (0.5 - t * (1 / 3.0 - t * 0.25)); u = INV_LN2_H * t; v = t * INV_LN2_L - w * INV_LN2; t1 = (float) (u + v); t2 = v - (t1 - u); } else { long bits = Double.doubleToLongBits(ax); int exp = (int) (bits >> 52); if (exp == 0) // Subnormal x. { ax *= TWO_54; bits = Double.doubleToLongBits(ax); exp = (int) (bits >> 52) - 54; } exp -= 1023; // Unbias exponent. ax = Double.longBitsToDouble((bits & 0x000fffffffffffffL) | 0x3ff0000000000000L); boolean k; if (ax < SQRT_1_5) // |x|<sqrt(3/2). k = false; else if (ax < SQRT_3) // |x|<sqrt(3). k = true; else { k = false; ax *= 0.5; exp++; } // Compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5). u = ax - (k ? 1.5 : 1); v = 1 / (ax + (k ? 1.5 : 1)); double s = u * v; double s_h = (float) s; double t_h = (float) (ax + (k ? 1.5 : 1)); double t_l = ax - (t_h - (k ? 1.5 : 1)); double s_l = v * ((u - s_h * t_h) - s_h * t_l); // Compute log(ax). double s2 = s * s; double r = s_l * (s_h + s) + s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); s2 = s_h * s_h; t_h = (float) (3.0 + s2 + r); t_l = r - (t_h - 3.0 - s2); // u+v = s*(1+...). u = s_h * t_h; v = s_l * t_h + t_l * s; // 2/(3log2)*(s+...). double p_h = (float) (u + v); double p_l = v - (p_h - u); double z_h = CP_H * p_h; double z_l = CP_L * p_h + p_l * CP + (k ? DP_L : 0); // log2(ax) = (s+..)*2/(3*log2) = exp + dp_h + z_h + z_l. t = exp; t1 = (float) (z_h + z_l + (k ? DP_H : 0) + t); t2 = z_l - (t1 - t - (k ? DP_H : 0) - z_h); } // Split up y into y1+y2 and compute (y1+y2)*(t1+t2). boolean negative = x < 0 && yisint == 1; double y1 = (float) y; double p_l = (y - y1) * t1 + y * t2; double p_h = y1 * t1; double z = p_l + p_h; if (z >= 1024) // Detect overflow. { if (z > 1024 || p_l + OVT > z - p_h) return negative ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY; } else if (z <= -1075) // Detect underflow. { if (z < -1075 || p_l <= z - p_h) return negative ? -0.0 : 0; } // Compute 2**(p_h+p_l). int n = round((float) z); p_h -= n; t = (float) (p_l + p_h); u = t * LN2_H; v = (p_l - (t - p_h)) * LN2 + t * LN2_L; z = u + v; w = v - (z - u); t = z * z; t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); double r = (z * t1) / (t1 - 2) - (w + z * w); z = scale(1 - (r - z), n); return negative ? -z : z; } /** * Get the IEEE 754 floating point remainder on two numbers. This is the * value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest * double to <code>x / y</code> (ties go to the even n); for a zero * remainder, the sign is that of <code>x</code>. If either argument is NaN, * the first argument is infinite, or the second argument is zero, the result * is NaN; if x is finite but y is infinte, the result is x. * * @param x the dividend (the top half) * @param y the divisor (the bottom half) * @return the IEEE 754-defined floating point remainder of x/y * @see #rint(double) */ public static double IEEEremainder(double x, double y) { // Purge off exception values. if (x == Double.NEGATIVE_INFINITY || ! (x < Double.POSITIVE_INFINITY) || y == 0 || y != y) return Double.NaN; boolean negative = x < 0; x = abs(x); y = abs(y); if (x == y || x == 0) return 0 * x; // Get correct sign. // Achieve x < 2y, then take first shot at remainder. if (y < TWO_1023) x %= y + y; // Now adjust x to get correct precision. if (y < 4 / TWO_1023) { if (x + x > y) { x -= y; if (x + x >= y) x -= y; } } else { y *= 0.5; if (x > y) { x -= y; if (x >= y) x -= y; } } return negative ? -x : x; } /** * Take the nearest integer that is that is greater than or equal to the * argument. If the argument is NaN, infinite, or zero, the result is the * same; if the argument is between -1 and 0, the result is negative zero. * Note that <code>Math.ceil(x) == -Math.floor(-x)</code>. * * @param a the value to act upon * @return the nearest integer >= <code>a</code> */ public static double ceil(double a) { return -floor(-a); } /** * Take the nearest integer that is that is less than or equal to the * argument. If the argument is NaN, infinite, or zero, the result is the * same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>. * * @param a the value to act upon * @return the nearest integer <= <code>a</code> */ public static double floor(double a) { double x = abs(a); if (! (x < TWO_52) || (long) a == a) return a; // No fraction bits; includes NaN and infinity. if (x < 1) return a >= 0 ? 0 * a : -1; // Worry about signed zero. return a < 0 ? (long) a - 1.0 : (long) a; // Cast to long truncates. } /** * Take the nearest integer to the argument. If it is exactly between * two integers, the even integer is taken. If the argument is NaN, * infinite, or zero, the result is the same. * * @param a the value to act upon * @return the nearest integer to <code>a</code> */ public static double rint(double a) { double x = abs(a); if (! (x < TWO_52)) return a; // No fraction bits; includes NaN and infinity. if (x <= 0.5) return 0 * a; // Worry about signed zero. if (x % 2 <= 0.5) return (long) a; // Catch round down to even. return (long) (a + (a < 0 ? -0.5 : 0.5)); // Cast to long truncates. } /** * Take the nearest integer to the argument. This is equivalent to * <code>(int) Math.floor(f + 0.5f)</code>. If the argument is NaN, the * result is 0; otherwise if the argument is outside the range of int, the * result will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate. * * @param f the argument to round * @return the nearest integer to the argument * @see Integer#MIN_VALUE * @see Integer#MAX_VALUE */ public static int round(float f) { return (int) floor(f + 0.5f); } /** * Take the nearest long to the argument. This is equivalent to * <code>(long) Math.floor(d + 0.5)</code>. If the argument is NaN, the * result is 0; otherwise if the argument is outside the range of long, the * result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate. * * @param d the argument to round * @return the nearest long to the argument * @see Long#MIN_VALUE * @see Long#MAX_VALUE */ public static long round(double d) { return (long) floor(d + 0.5); } /** * Get a random number. This behaves like Random.nextDouble(), seeded by * System.currentTimeMillis() when first called. In other words, the number * is from a pseudorandom sequence, and lies in the range [+0.0, 1.0). * This random sequence is only used by this method, and is threadsafe, * although you may want your own random number generator if it is shared * among threads. * * @return a random number * @see Random#nextDouble() * @see System#currentTimeMillis() */ public static synchronized double random() { if (rand == null) rand = new Random(); return rand.nextDouble(); } /** * Convert from degrees to radians. The formula for this is * radians = degrees * (pi/180); however it is not always exact given the * limitations of floating point numbers. * * @param degrees an angle in degrees * @return the angle in radians */ public static double toRadians(double degrees) { return degrees * (PI / 180); } /** * Convert from radians to degrees. The formula for this is * degrees = radians * (180/pi); however it is not always exact given the * limitations of floating point numbers. * * @param rads an angle in radians * @return the angle in degrees */ public static double toDegrees(double rads) { return rads * (180 / PI); } /** * Constants for scaling and comparing doubles by powers of 2. The compiler * must automatically inline constructs like (1/TWO_54), so we don't list * negative powers of two here. */ private static final double TWO_16 = 0x10000, // Long bits 0x40f0000000000000L. TWO_20 = 0x100000, // Long bits 0x4130000000000000L. TWO_24 = 0x1000000, // Long bits 0x4170000000000000L. TWO_27 = 0x8000000, // Long bits 0x41a0000000000000L. TWO_28 = 0x10000000, // Long bits 0x41b0000000000000L. TWO_29 = 0x20000000, // Long bits 0x41c0000000000000L. TWO_31 = 0x80000000L, // Long bits 0x41e0000000000000L. TWO_49 = 0x2000000000000L, // Long bits 0x4300000000000000L. TWO_52 = 0x10000000000000L, // Long bits 0x4330000000000000L. TWO_54 = 0x40000000000000L, // Long bits 0x4350000000000000L. TWO_57 = 0x200000000000000L, // Long bits 0x4380000000000000L. TWO_60 = 0x1000000000000000L, // Long bits 0x43b0000000000000L. TWO_64 = 1.8446744073709552e19, // Long bits 0x43f0000000000000L. TWO_66 = 7.378697629483821e19, // Long bits 0x4410000000000000L. TWO_1023 = 8.98846567431158e307; // Long bits 0x7fe0000000000000L. /** * Super precision for 2/pi in 24-bit chunks, for use in * {@link #remPiOver2()}. */ private static final int TWO_OVER_PI[] = { 0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62, 0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a, 0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129, 0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41, 0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8, 0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf, 0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5, 0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08, 0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3, 0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880, 0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b, }; /** * Super precision for pi/2 in 24-bit chunks, for use in * {@link #remPiOver2()}. */ private static final double PI_OVER_TWO[] = { 1.570796251296997, // Long bits 0x3ff921fb40000000L. 7.549789415861596e-8, // Long bits 0x3e74442d00000000L. 5.390302529957765e-15, // Long bits 0x3cf8469880000000L. 3.282003415807913e-22, // Long bits 0x3b78cc5160000000L. 1.270655753080676e-29, // Long bits 0x39f01b8380000000L. 1.2293330898111133e-36, // Long bits 0x387a252040000000L. 2.7337005381646456e-44, // Long bits 0x36e3822280000000L. 2.1674168387780482e-51, // Long bits 0x3569f31d00000000L. }; /** * More constants related to pi, used in {@link #remPiOver2()} and * elsewhere. */ private static final double PI_L = 1.2246467991473532e-16, // Long bits 0x3ca1a62633145c07L. PIO2_1 = 1.5707963267341256, // Long bits 0x3ff921fb54400000L. PIO2_1L = 6.077100506506192e-11, // Long bits 0x3dd0b4611a626331L. PIO2_2 = 6.077100506303966e-11, // Long bits 0x3dd0b4611a600000L. PIO2_2L = 2.0222662487959506e-21, // Long bits 0x3ba3198a2e037073L. PIO2_3 = 2.0222662487111665e-21, // Long bits 0x3ba3198a2e000000L. PIO2_3L = 8.4784276603689e-32; // Long bits 0x397b839a252049c1L. /** * Natural log and square root constants, for calculation of * {@link #exp(double)}, {@link #log(double)} and * {@link #power(double, double)}. CP is 2/(3*ln(2)). */ private static final double SQRT_1_5 = 1.224744871391589, // Long bits 0x3ff3988e1409212eL. SQRT_2 = 1.4142135623730951, // Long bits 0x3ff6a09e667f3bcdL. SQRT_3 = 1.7320508075688772, // Long bits 0x3ffbb67ae8584caaL. EXP_LIMIT_H = 709.782712893384, // Long bits 0x40862e42fefa39efL. EXP_LIMIT_L = -745.1332191019411, // Long bits 0xc0874910d52d3051L. CP = 0.9617966939259756, // Long bits 0x3feec709dc3a03fdL. CP_H = 0.9617967009544373, // Long bits 0x3feec709e0000000L. CP_L = -7.028461650952758e-9, // Long bits 0xbe3e2fe0145b01f5L. LN2 = 0.6931471805599453, // Long bits 0x3fe62e42fefa39efL. LN2_H = 0.6931471803691238, // Long bits 0x3fe62e42fee00000L. LN2_L = 1.9082149292705877e-10, // Long bits 0x3dea39ef35793c76L. INV_LN2 = 1.4426950408889634, // Long bits 0x3ff71547652b82feL. INV_LN2_H = 1.4426950216293335, // Long bits 0x3ff7154760000000L. INV_LN2_L = 1.9259629911266175e-8; // Long bits 0x3e54ae0bf85ddf44L. /** * Constants for computing {@link #log(double)}. */ private static final double LG1 = 0.6666666666666735, // Long bits 0x3fe5555555555593L. LG2 = 0.3999999999940942, // Long bits 0x3fd999999997fa04L. LG3 = 0.2857142874366239, // Long bits 0x3fd2492494229359L. LG4 = 0.22222198432149784, // Long bits 0x3fcc71c51d8e78afL. LG5 = 0.1818357216161805, // Long bits 0x3fc7466496cb03deL. LG6 = 0.15313837699209373, // Long bits 0x3fc39a09d078c69fL. LG7 = 0.14798198605116586; // Long bits 0x3fc2f112df3e5244L. /** * Constants for computing {@link #pow(double, double)}. L and P are * coefficients for series; OVT is -(1024-log2(ovfl+.5ulp)); and DP is ???. * The P coefficients also calculate {@link #exp(double)}. */ private static final double L1 = 0.5999999999999946, // Long bits 0x3fe3333333333303L. L2 = 0.4285714285785502, // Long bits 0x3fdb6db6db6fabffL. L3 = 0.33333332981837743, // Long bits 0x3fd55555518f264dL. L4 = 0.272728123808534, // Long bits 0x3fd17460a91d4101L. L5 = 0.23066074577556175, // Long bits 0x3fcd864a93c9db65L. L6 = 0.20697501780033842, // Long bits 0x3fca7e284a454eefL. P1 = 0.16666666666666602, // Long bits 0x3fc555555555553eL. P2 = -2.7777777777015593e-3, // Long bits 0xbf66c16c16bebd93L. P3 = 6.613756321437934e-5, // Long bits 0x3f11566aaf25de2cL. P4 = -1.6533902205465252e-6, // Long bits 0xbebbbd41c5d26bf1L. P5 = 4.1381367970572385e-8, // Long bits 0x3e66376972bea4d0L. DP_H = 0.5849624872207642, // Long bits 0x3fe2b80340000000L. DP_L = 1.350039202129749e-8, // Long bits 0x3e4cfdeb43cfd006L. OVT = 8.008566259537294e-17; // Long bits 0x3c971547652b82feL. /** * Coefficients for computing {@link #sin(double)}. */ private static final double S1 = -0.16666666666666632, // Long bits 0xbfc5555555555549L. S2 = 8.33333333332249e-3, // Long bits 0x3f8111111110f8a6L. S3 = -1.984126982985795e-4, // Long bits 0xbf2a01a019c161d5L. S4 = 2.7557313707070068e-6, // Long bits 0x3ec71de357b1fe7dL. S5 = -2.5050760253406863e-8, // Long bits 0xbe5ae5e68a2b9cebL. S6 = 1.58969099521155e-10; // Long bits 0x3de5d93a5acfd57cL. /** * Coefficients for computing {@link #cos(double)}. */ private static final double C1 = 0.0416666666666666, // Long bits 0x3fa555555555554cL. C2 = -1.388888888887411e-3, // Long bits 0xbf56c16c16c15177L. C3 = 2.480158728947673e-5, // Long bits 0x3efa01a019cb1590L. C4 = -2.7557314351390663e-7, // Long bits 0xbe927e4f809c52adL. C5 = 2.087572321298175e-9, // Long bits 0x3e21ee9ebdb4b1c4L. C6 = -1.1359647557788195e-11; // Long bits 0xbda8fae9be8838d4L. /** * Coefficients for computing {@link #tan(double)}. */ private static final double T0 = 0.3333333333333341, // Long bits 0x3fd5555555555563L. T1 = 0.13333333333320124, // Long bits 0x3fc111111110fe7aL. T2 = 0.05396825397622605, // Long bits 0x3faba1ba1bb341feL. T3 = 0.021869488294859542, // Long bits 0x3f9664f48406d637L.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -