📄 polygon.java
字号:
boolean inside = false; int limit = condensed[0]; int curx = condensed[(limit << 1) - 1]; int cury = condensed[limit << 1]; for (int i = 1; i <= limit; i++) { int priorx = curx; int priory = cury; curx = condensed[(i << 1) - 1]; cury = condensed[i << 1]; if ((priorx > x && curx > x) // Left of segment, or NaN. || (priory > y && cury > y) // Below segment, or NaN. || (priory < y && cury < y)) // Above segment. continue; if (priory == cury) // Horizontal segment, y == cury == priory { if (priorx < x && curx < x) // Right of segment. { inside = ! inside; continue; } // Did we approach this segment from above or below? // This mess is necessary to obey rules of Shape. priory = condensed[((limit + i - 2) % limit) << 1]; boolean above = priory > cury; if ((curx == x && (curx > priorx || above)) || (priorx == x && (curx < priorx || ! above)) || (curx > priorx && ! above) || above) inside = ! inside; continue; } if (priorx == x && priory == y) // On prior vertex. continue; if (priorx == curx // Vertical segment. || (priorx < x && curx < x)) // Right of segment. { inside = ! inside; continue; } // The point is inside the segment's bounding box, compare slopes. double leftx = curx > priorx ? priorx : curx; double lefty = curx > priorx ? priory : cury; double slopeseg = (double) (cury - priory) / (curx - priorx); double slopepoint = (double) (y - lefty) / (x - leftx); if ((slopeseg > 0 && slopeseg > slopepoint) || slopeseg < slopepoint) inside = ! inside; } return inside; } /** * Tests whether or not the specified point is inside this polygon. * * @param p the point to test * @return true if the point is inside this polygon * @throws NullPointerException if p is null * @see #contains(double, double) * @since 1.2 */ public boolean contains(Point2D p) { return contains(p.getX(), p.getY()); } /** * Test if a high-precision rectangle intersects the shape. This is true * if any point in the rectangle is in the shape. This implementation is * precise. * * @param x the x coordinate of the rectangle * @param y the y coordinate of the rectangle * @param w the width of the rectangle, treated as point if negative * @param h the height of the rectangle, treated as point if negative * @return true if the rectangle intersects this shape * @since 1.2 */ public boolean intersects(double x, double y, double w, double h) { // First, the obvious bounds checks. if (w <= 0 || h <= 0 || npoints == 0 || ! getBounds().intersects(x, y, w, h)) return false; // Disjoint bounds. if ((x <= bounds.x && x + w >= bounds.x + bounds.width && y <= bounds.y && y + h >= bounds.y + bounds.height) || contains(x, y)) return true; // Rectangle contains the polygon, or one point matches. // If any vertex is in the rectangle, the two might intersect. int curx = 0; int cury = 0; for (int i = 0; i < npoints; i++) { curx = xpoints[i]; cury = ypoints[i]; if (curx >= x && curx < x + w && cury >= y && cury < y + h && contains(curx, cury)) // Boundary check necessary. return true; } // Finally, if at least one of the four bounding lines intersect any // segment of the polygon, return true. Be careful of the semantics of // Shape; coinciding lines do not necessarily return true. for (int i = 0; i < npoints; i++) { int priorx = curx; int priory = cury; curx = xpoints[i]; cury = ypoints[i]; if (priorx == curx) // Vertical segment. { if (curx < x || curx >= x + w) // Outside rectangle. continue; if ((cury >= y + h && priory <= y) || (cury <= y && priory >= y + h)) return true; // Bisects rectangle. continue; } if (priory == cury) // Horizontal segment. { if (cury < y || cury >= y + h) // Outside rectangle. continue; if ((curx >= x + w && priorx <= x) || (curx <= x && priorx >= x + w)) return true; // Bisects rectangle. continue; } // Slanted segment. double slope = (double) (cury - priory) / (curx - priorx); double intersect = slope * (x - curx) + cury; if (intersect > y && intersect < y + h) // Intersects left edge. return true; intersect = slope * (x + w - curx) + cury; if (intersect > y && intersect < y + h) // Intersects right edge. return true; intersect = (y - cury) / slope + curx; if (intersect > x && intersect < x + w) // Intersects bottom edge. return true; intersect = (y + h - cury) / slope + cury; if (intersect > x && intersect < x + w) // Intersects top edge. return true; } return false; } /** * Test if a high-precision rectangle intersects the shape. This is true * if any point in the rectangle is in the shape. This implementation is * precise. * * @param r the rectangle * @return true if the rectangle intersects this shape * @throws NullPointerException if r is null * @see #intersects(double, double, double, double) * @since 1.2 */ public boolean intersects(Rectangle2D r) { return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } /** * Test if a high-precision rectangle lies completely in the shape. This is * true if all points in the rectangle are in the shape. This implementation * is precise. * * @param x the x coordinate of the rectangle * @param y the y coordinate of the rectangle * @param w the width of the rectangle, treated as point if negative * @param h the height of the rectangle, treated as point if negative * @return true if the rectangle is contained in this shape * @since 1.2 */ public boolean contains(double x, double y, double w, double h) { // First, the obvious bounds checks. if (w <= 0 || h <= 0 || ! contains(x, y) || ! bounds.contains(x, y, w, h)) return false; // Now, if any of the four bounding lines intersects a polygon segment, // return false. The previous check had the side effect of setting // the condensed array, which we use. Be careful of the semantics of // Shape; coinciding lines do not necessarily return false. int limit = condensed[0]; int curx = condensed[(limit << 1) - 1]; int cury = condensed[limit << 1]; for (int i = 1; i <= limit; i++) { int priorx = curx; int priory = cury; curx = condensed[(i << 1) - 1]; cury = condensed[i << 1]; if (curx > x && curx < x + w && cury > y && cury < y + h) return false; // Vertex is in rectangle. if (priorx == curx) // Vertical segment. { if (curx < x || curx > x + w) // Outside rectangle. continue; if ((cury >= y + h && priory <= y) || (cury <= y && priory >= y + h)) return false; // Bisects rectangle. continue; } if (priory == cury) // Horizontal segment. { if (cury < y || cury > y + h) // Outside rectangle. continue; if ((curx >= x + w && priorx <= x) || (curx <= x && priorx >= x + w)) return false; // Bisects rectangle. continue; } // Slanted segment. double slope = (double) (cury - priory) / (curx - priorx); double intersect = slope * (x - curx) + cury; if (intersect > y && intersect < y + h) // Intersects left edge. return false; intersect = slope * (x + w - curx) + cury; if (intersect > y && intersect < y + h) // Intersects right edge. return false; intersect = (y - cury) / slope + curx; if (intersect > x && intersect < x + w) // Intersects bottom edge. return false; intersect = (y + h - cury) / slope + cury; if (intersect > x && intersect < x + w) // Intersects top edge. return false; } return true; } /** * Test if a high-precision rectangle lies completely in the shape. This is * true if all points in the rectangle are in the shape. This implementation * is precise. * * @param r the rectangle * @return true if the rectangle is contained in this shape * @throws NullPointerException if r is null * @see #contains(double, double, double, double) * @since 1.2 */ public boolean contains(Rectangle2D r) { return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } /** * Return an iterator along the shape boundary. If the optional transform * is provided, the iterator is transformed accordingly. Each call returns * a new object, independent from others in use. This class is not * threadsafe to begin with, so the path iterator is not either. * * @param transform an optional transform to apply to the iterator * @return a new iterator over the boundary * @since 1.2 */ public PathIterator getPathIterator(final AffineTransform transform) { return new PathIterator() { /** The current vertex of iteration. */ private int vertex; public int getWindingRule() { return WIND_EVEN_ODD; } public boolean isDone() { return vertex > npoints; } public void next() { vertex++; } public int currentSegment(float[] coords) { if (vertex >= npoints) return SEG_CLOSE; coords[0] = xpoints[vertex]; coords[1] = ypoints[vertex]; if (transform != null) transform.transform(coords, 0, coords, 0, 1); return vertex == 0 ? SEG_MOVETO : SEG_LINETO; } public int currentSegment(double[] coords) { if (vertex >= npoints) return SEG_CLOSE; coords[0] = xpoints[vertex]; coords[1] = ypoints[vertex]; if (transform != null) transform.transform(coords, 0, coords, 0, 1); return vertex == 0 ? SEG_MOVETO : SEG_LINETO; } }; } /** * Return an iterator along the flattened version of the shape boundary. * Since polygons are already flat, the flatness parameter is ignored, and * the resulting iterator only has SEG_MOVETO, SEG_LINETO and SEG_CLOSE * points. If the optional transform is provided, the iterator is * transformed accordingly. Each call returns a new object, independent * from others in use. This class is not threadsafe to begin with, so the * path iterator is not either. * * @param transform an optional transform to apply to the iterator * @param double the maximum distance for deviation from the real boundary * @return a new iterator over the boundary * @since 1.2 */ public PathIterator getPathIterator(AffineTransform transform, double flatness) { return getPathIterator(transform); } /** * Helper for contains, which caches a condensed version of the polygon. * This condenses all colinear points, so that consecutive segments in * the condensed version always have different slope. * * @return true if the condensed polygon has area * @see #condensed * @see #contains(double, double) */ private boolean condense() { if (npoints <= 2) return false; if (condensed != null) return condensed[0] > 2; condensed = new int[npoints * 2 + 1]; int curx = xpoints[npoints - 1]; int cury = ypoints[npoints - 1]; double curslope = Double.NaN; int count = 0; outer: for (int i = 0; i < npoints; i++) { int priorx = curx; int priory = cury; double priorslope = curslope; curx = xpoints[i]; cury = ypoints[i]; while (curx == priorx && cury == priory) { if (++i == npoints) break outer; curx = xpoints[i]; cury = ypoints[i]; } curslope = (curx == priorx ? Double.POSITIVE_INFINITY : (double) (cury - priory) / (curx - priorx)); if (priorslope == curslope) { if (count > 1 && condensed[(count << 1) - 3] == curx && condensed[(count << 1) - 2] == cury) { count--; continue; } } else count++; condensed[(count << 1) - 1] = curx; condensed[count << 1] = cury; } condensed[0] = count; return count > 2; }} // class Polygon
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -