⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 polygon.java

📁 this gcc-g++-3.3.1.tar.gz is a source file of gcc, you can learn more about gcc through this codes f
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
    boolean inside = false;    int limit = condensed[0];    int curx = condensed[(limit << 1) - 1];    int cury = condensed[limit << 1];    for (int i = 1; i <= limit; i++)      {        int priorx = curx;        int priory = cury;        curx = condensed[(i << 1) - 1];        cury = condensed[i << 1];        if ((priorx > x && curx > x) // Left of segment, or NaN.            || (priory > y && cury > y) // Below segment, or NaN.            || (priory < y && cury < y)) // Above segment.          continue;        if (priory == cury) // Horizontal segment, y == cury == priory          {            if (priorx < x && curx < x) // Right of segment.              {                inside = ! inside;                continue;              }            // Did we approach this segment from above or below?            // This mess is necessary to obey rules of Shape.            priory = condensed[((limit + i - 2) % limit) << 1];            boolean above = priory > cury;            if ((curx == x && (curx > priorx || above))                || (priorx == x && (curx < priorx || ! above))                || (curx > priorx && ! above) || above)              inside = ! inside;            continue;          }        if (priorx == x && priory == y) // On prior vertex.          continue;        if (priorx == curx // Vertical segment.            || (priorx < x && curx < x)) // Right of segment.          {            inside = ! inside;            continue;          }        // The point is inside the segment's bounding box, compare slopes.        double leftx = curx > priorx ? priorx : curx;        double lefty = curx > priorx ? priory : cury;        double slopeseg = (double) (cury - priory) / (curx - priorx);        double slopepoint = (double) (y - lefty) / (x - leftx);        if ((slopeseg > 0 && slopeseg > slopepoint)            || slopeseg < slopepoint)          inside = ! inside;      }    return inside;  }  /**   * Tests whether or not the specified point is inside this polygon.   *   * @param p the point to test   * @return true if the point is inside this polygon   * @throws NullPointerException if p is null   * @see #contains(double, double)   * @since 1.2   */  public boolean contains(Point2D p)  {    return contains(p.getX(), p.getY());  }  /**   * Test if a high-precision rectangle intersects the shape. This is true   * if any point in the rectangle is in the shape. This implementation is   * precise.   *   * @param x the x coordinate of the rectangle   * @param y the y coordinate of the rectangle   * @param w the width of the rectangle, treated as point if negative   * @param h the height of the rectangle, treated as point if negative   * @return true if the rectangle intersects this shape   * @since 1.2   */  public boolean intersects(double x, double y, double w, double h)  {    // First, the obvious bounds checks.    if (w <= 0 || h <= 0 || npoints == 0 ||        ! getBounds().intersects(x, y, w, h))      return false; // Disjoint bounds.    if ((x <= bounds.x && x + w >= bounds.x + bounds.width         && y <= bounds.y && y + h >= bounds.y + bounds.height)        || contains(x, y))      return true; // Rectangle contains the polygon, or one point matches.    // If any vertex is in the rectangle, the two might intersect.    int curx = 0;    int cury = 0;    for (int i = 0; i < npoints; i++)      {        curx = xpoints[i];        cury = ypoints[i];        if (curx >= x && curx < x + w && cury >= y && cury < y + h            && contains(curx, cury)) // Boundary check necessary.          return true;      }    // Finally, if at least one of the four bounding lines intersect any    // segment of the polygon, return true. Be careful of the semantics of    // Shape; coinciding lines do not necessarily return true.    for (int i = 0; i < npoints; i++)      {        int priorx = curx;        int priory = cury;        curx = xpoints[i];        cury = ypoints[i];        if (priorx == curx) // Vertical segment.          {            if (curx < x || curx >= x + w) // Outside rectangle.              continue;            if ((cury >= y + h && priory <= y)                || (cury <= y && priory >= y + h))              return true; // Bisects rectangle.            continue;          }        if (priory == cury) // Horizontal segment.          {            if (cury < y || cury >= y + h) // Outside rectangle.              continue;            if ((curx >= x + w && priorx <= x)                || (curx <= x && priorx >= x + w))              return true; // Bisects rectangle.            continue;          }        // Slanted segment.        double slope = (double) (cury - priory) / (curx - priorx);        double intersect = slope * (x - curx) + cury;        if (intersect > y && intersect < y + h) // Intersects left edge.          return true;        intersect = slope * (x + w - curx) + cury;        if (intersect > y && intersect < y + h) // Intersects right edge.          return true;        intersect = (y - cury) / slope + curx;        if (intersect > x && intersect < x + w) // Intersects bottom edge.          return true;        intersect = (y + h - cury) / slope + cury;        if (intersect > x && intersect < x + w) // Intersects top edge.          return true;      }    return false;  }  /**   * Test if a high-precision rectangle intersects the shape. This is true   * if any point in the rectangle is in the shape. This implementation is   * precise.   *   * @param r the rectangle   * @return true if the rectangle intersects this shape   * @throws NullPointerException if r is null   * @see #intersects(double, double, double, double)   * @since 1.2   */  public boolean intersects(Rectangle2D r)  {    return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());  }  /**   * Test if a high-precision rectangle lies completely in the shape. This is   * true if all points in the rectangle are in the shape. This implementation   * is precise.   *   * @param x the x coordinate of the rectangle   * @param y the y coordinate of the rectangle   * @param w the width of the rectangle, treated as point if negative   * @param h the height of the rectangle, treated as point if negative   * @return true if the rectangle is contained in this shape   * @since 1.2   */  public boolean contains(double x, double y, double w, double h)  {    // First, the obvious bounds checks.    if (w <= 0 || h <= 0 || ! contains(x, y)        || ! bounds.contains(x, y, w, h))      return false;    // Now, if any of the four bounding lines intersects a polygon segment,    // return false. The previous check had the side effect of setting    // the condensed array, which we use. Be careful of the semantics of    // Shape; coinciding lines do not necessarily return false.    int limit = condensed[0];    int curx = condensed[(limit << 1) - 1];    int cury = condensed[limit << 1];    for (int i = 1; i <= limit; i++)      {        int priorx = curx;        int priory = cury;        curx = condensed[(i << 1) - 1];        cury = condensed[i << 1];        if (curx > x && curx < x + w && cury > y && cury < y + h)          return false; // Vertex is in rectangle.        if (priorx == curx) // Vertical segment.          {            if (curx < x || curx > x + w) // Outside rectangle.              continue;            if ((cury >= y + h && priory <= y)                || (cury <= y && priory >= y + h))              return false; // Bisects rectangle.            continue;          }        if (priory == cury) // Horizontal segment.          {            if (cury < y || cury > y + h) // Outside rectangle.              continue;            if ((curx >= x + w && priorx <= x)                || (curx <= x && priorx >= x + w))              return false; // Bisects rectangle.            continue;          }        // Slanted segment.        double slope = (double) (cury - priory) / (curx - priorx);        double intersect = slope * (x - curx) + cury;        if (intersect > y && intersect < y + h) // Intersects left edge.          return false;        intersect = slope * (x + w - curx) + cury;        if (intersect > y && intersect < y + h) // Intersects right edge.          return false;        intersect = (y - cury) / slope + curx;        if (intersect > x && intersect < x + w) // Intersects bottom edge.          return false;        intersect = (y + h - cury) / slope + cury;        if (intersect > x && intersect < x + w) // Intersects top edge.          return false;      }    return true;  }  /**   * Test if a high-precision rectangle lies completely in the shape. This is   * true if all points in the rectangle are in the shape. This implementation   * is precise.   *   * @param r the rectangle   * @return true if the rectangle is contained in this shape   * @throws NullPointerException if r is null   * @see #contains(double, double, double, double)   * @since 1.2   */  public boolean contains(Rectangle2D r)  {    return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());  }  /**   * Return an iterator along the shape boundary. If the optional transform   * is provided, the iterator is transformed accordingly. Each call returns   * a new object, independent from others in use. This class is not   * threadsafe to begin with, so the path iterator is not either.   *   * @param transform an optional transform to apply to the iterator   * @return a new iterator over the boundary   * @since 1.2   */  public PathIterator getPathIterator(final AffineTransform transform)  {    return new PathIterator()    {      /** The current vertex of iteration. */      private int vertex;      public int getWindingRule()      {        return WIND_EVEN_ODD;      }      public boolean isDone()      {        return vertex > npoints;      }      public void next()      {        vertex++;      }      public int currentSegment(float[] coords)      {        if (vertex >= npoints)          return SEG_CLOSE;        coords[0] = xpoints[vertex];        coords[1] = ypoints[vertex];        if (transform != null)          transform.transform(coords, 0, coords, 0, 1);        return vertex == 0 ? SEG_MOVETO : SEG_LINETO;      }      public int currentSegment(double[] coords)      {        if (vertex >= npoints)          return SEG_CLOSE;        coords[0] = xpoints[vertex];        coords[1] = ypoints[vertex];        if (transform != null)          transform.transform(coords, 0, coords, 0, 1);        return vertex == 0 ? SEG_MOVETO : SEG_LINETO;      }    };  }  /**   * Return an iterator along the flattened version of the shape boundary.   * Since polygons are already flat, the flatness parameter is ignored, and   * the resulting iterator only has SEG_MOVETO, SEG_LINETO and SEG_CLOSE   * points. If the optional transform is provided, the iterator is   * transformed accordingly. Each call returns a new object, independent   * from others in use. This class is not threadsafe to begin with, so the   * path iterator is not either.   *   * @param transform an optional transform to apply to the iterator   * @param double the maximum distance for deviation from the real boundary   * @return a new iterator over the boundary   * @since 1.2   */  public PathIterator getPathIterator(AffineTransform transform,                                      double flatness)  {    return getPathIterator(transform);  }  /**   * Helper for contains, which caches a condensed version of the polygon.   * This condenses all colinear points, so that consecutive segments in   * the condensed version always have different slope.   *   * @return true if the condensed polygon has area   * @see #condensed   * @see #contains(double, double)   */  private boolean condense()  {    if (npoints <= 2)      return false;    if (condensed != null)      return condensed[0] > 2;    condensed = new int[npoints * 2 + 1];    int curx = xpoints[npoints - 1];    int cury = ypoints[npoints - 1];    double curslope = Double.NaN;    int count = 0;  outer:    for (int i = 0; i < npoints; i++)      {        int priorx = curx;        int priory = cury;        double priorslope = curslope;        curx = xpoints[i];        cury = ypoints[i];        while (curx == priorx && cury == priory)          {            if (++i == npoints)              break outer;            curx = xpoints[i];            cury = ypoints[i];          }        curslope = (curx == priorx ? Double.POSITIVE_INFINITY                    : (double) (cury - priory) / (curx - priorx));        if (priorslope == curslope)          {            if (count > 1 && condensed[(count << 1) - 3] == curx                && condensed[(count << 1) - 2] == cury)              {                count--;                continue;              }          }        else          count++;        condensed[(count << 1) - 1] = curx;        condensed[count << 1] = cury;      }    condensed[0] = count;    return count > 2;  }} // class Polygon

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -