📄 std_complex.h
字号:
// The template and inlines for the -*- C++ -*- complex number classes.// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002// Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library. This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING. If not, write to the Free// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,// USA.// As a special exception, you may use this file as part of a free software// library without restriction. Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License. This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License.//// ISO C++ 14882: 26.2 Complex Numbers// Note: this is not a conforming implementation.// Initially implemented by Ulrich Drepper <drepper@cygnus.com>// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>///** @file complex * This is a Standard C++ Library header. You should @c #include this header * in your programs, rather than any of the "st[dl]_*.h" implementation files. */#ifndef _CPP_COMPLEX#define _CPP_COMPLEX 1#pragma GCC system_header#include <bits/c++config.h>#include <bits/cpp_type_traits.h>#include <cmath>#include <sstream>namespace std{ // Forward declarations template<typename _Tp> class complex; template<> class complex<float>; template<> class complex<double>; template<> class complex<long double>; template<typename _Tp> _Tp abs(const complex<_Tp>&); template<typename _Tp> _Tp arg(const complex<_Tp>&); template<typename _Tp> _Tp norm(const complex<_Tp>&); template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&); template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0); // Transcendentals: template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&); template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&); template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&); template<typename _Tp> complex<_Tp> log(const complex<_Tp>&); template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&); template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int); template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&); template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const complex<_Tp>&); template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&); template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&); template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&); template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&); template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&); template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&); // 26.2.2 Primary template class complex template<typename _Tp> class complex { public: typedef _Tp value_type; complex(const _Tp& = _Tp(), const _Tp & = _Tp()); // Let's the compiler synthetize the copy constructor // complex (const complex<_Tp>&); template<typename _Up> complex(const complex<_Up>&); _Tp real() const; _Tp imag() const; complex<_Tp>& operator=(const _Tp&); complex<_Tp>& operator+=(const _Tp&); complex<_Tp>& operator-=(const _Tp&); complex<_Tp>& operator*=(const _Tp&); complex<_Tp>& operator/=(const _Tp&); // Let's the compiler synthetize the // copy and assignment operator // complex<_Tp>& operator= (const complex<_Tp>&); template<typename _Up> complex<_Tp>& operator=(const complex<_Up>&); template<typename _Up> complex<_Tp>& operator+=(const complex<_Up>&); template<typename _Up> complex<_Tp>& operator-=(const complex<_Up>&); template<typename _Up> complex<_Tp>& operator*=(const complex<_Up>&); template<typename _Up> complex<_Tp>& operator/=(const complex<_Up>&); private: _Tp _M_real, _M_imag; }; template<typename _Tp> inline _Tp complex<_Tp>::real() const { return _M_real; } template<typename _Tp> inline _Tp complex<_Tp>::imag() const { return _M_imag; } template<typename _Tp> inline complex<_Tp>::complex(const _Tp& __r, const _Tp& __i) : _M_real(__r), _M_imag(__i) { } template<typename _Tp> template<typename _Up> inline complex<_Tp>::complex(const complex<_Up>& __z) : _M_real(__z.real()), _M_imag(__z.imag()) { } template<typename _Tp> complex<_Tp>& complex<_Tp>::operator=(const _Tp& __t) { _M_real = __t; _M_imag = _Tp(); return *this; } // 26.2.5/1 template<typename _Tp> inline complex<_Tp>& complex<_Tp>::operator+=(const _Tp& __t) { _M_real += __t; return *this; } // 26.2.5/3 template<typename _Tp> inline complex<_Tp>& complex<_Tp>::operator-=(const _Tp& __t) { _M_real -= __t; return *this; } // 26.2.5/5 template<typename _Tp> complex<_Tp>& complex<_Tp>::operator*=(const _Tp& __t) { _M_real *= __t; _M_imag *= __t; return *this; } // 26.2.5/7 template<typename _Tp> complex<_Tp>& complex<_Tp>::operator/=(const _Tp& __t) { _M_real /= __t; _M_imag /= __t; return *this; } template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator=(const complex<_Up>& __z) { _M_real = __z.real(); _M_imag = __z.imag(); return *this; } // 26.2.5/9 template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator+=(const complex<_Up>& __z) { _M_real += __z.real(); _M_imag += __z.imag(); return *this; } // 26.2.5/11 template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator-=(const complex<_Up>& __z) { _M_real -= __z.real(); _M_imag -= __z.imag(); return *this; } // 26.2.5/13 // XXX: This is a grammar school implementation. template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator*=(const complex<_Up>& __z) { const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag(); _M_imag = _M_real * __z.imag() + _M_imag * __z.real(); _M_real = __r; return *this; } // 26.2.5/15 // XXX: This is a grammar school implementation. template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator/=(const complex<_Up>& __z) { const _Tp __r = _M_real * __z.real() + _M_imag * __z.imag(); const _Tp __n = norm(__z); _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n; _M_real = __r / __n; return *this; } // Operators: template<typename _Tp> inline complex<_Tp> operator+(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) += __y; } template<typename _Tp> inline complex<_Tp> operator+(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) += __y; } template<typename _Tp> inline complex<_Tp> operator+(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__y) += __x; } template<typename _Tp> inline complex<_Tp> operator-(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) -= __y; } template<typename _Tp> inline complex<_Tp> operator-(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) -= __y; } template<typename _Tp> inline complex<_Tp> operator-(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) -= __y; } template<typename _Tp> inline complex<_Tp> operator*(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) *= __y; } template<typename _Tp> inline complex<_Tp> operator*(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) *= __y; } template<typename _Tp> inline complex<_Tp> operator*(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__y) *= __x; } template<typename _Tp> inline complex<_Tp> operator/(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) /= __y; } template<typename _Tp> inline complex<_Tp> operator/(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) /= __y; } template<typename _Tp> inline complex<_Tp> operator/(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) /= __y; } template<typename _Tp> inline complex<_Tp> operator+(const complex<_Tp>& __x) { return __x; } template<typename _Tp> inline complex<_Tp> operator-(const complex<_Tp>& __x) { return complex<_Tp>(-__x.real(), -__x.imag()); } template<typename _Tp> inline bool operator==(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __x.real() == __y.real() && __x.imag() == __y.imag(); } template<typename _Tp> inline bool operator==(const complex<_Tp>& __x, const _Tp& __y) { return __x.real() == __y && __x.imag() == _Tp(); } template<typename _Tp> inline bool operator==(const _Tp& __x, const complex<_Tp>& __y) { return __x == __y.real() && _Tp() == __y.imag(); } template<typename _Tp> inline bool operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __x.real() != __y.real() || __x.imag() != __y.imag(); } template<typename _Tp> inline bool operator!=(const complex<_Tp>& __x, const _Tp& __y) { return __x.real() != __y || __x.imag() != _Tp(); } template<typename _Tp> inline bool operator!=(const _Tp& __x, const complex<_Tp>& __y) { return __x != __y.real() || _Tp() != __y.imag(); } template<typename _Tp, typename _CharT, class _Traits> basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x) { _Tp __re_x, __im_x; _CharT __ch; __is >> __ch; if (__ch == '(') { __is >> __re_x >> __ch; if (__ch == ',') { __is >> __im_x >> __ch; if (__ch == ')') __x = complex<_Tp>(__re_x, __im_x); else __is.setstate(ios_base::failbit); } else if (__ch == ')') __x = complex<_Tp>(__re_x, _Tp(0)); else __is.setstate(ios_base::failbit); } else { __is.putback(__ch); __is >> __re_x; __x = complex<_Tp>(__re_x, _Tp(0)); } return __is; } template<typename _Tp, typename _CharT, class _Traits> basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x) { basic_ostringstream<_CharT, _Traits> __s; __s.flags(__os.flags()); __s.imbue(__os.getloc()); __s.precision(__os.precision()); __s << '(' << __x.real() << ',' << __x.imag() << ')'; return __os << __s.str(); } // Values template<typename _Tp> inline _Tp real(const complex<_Tp>& __z) { return __z.real(); } template<typename _Tp> inline _Tp imag(const complex<_Tp>& __z) { return __z.imag(); } template<typename _Tp> inline _Tp abs(const complex<_Tp>& __z) { _Tp __x = __z.real(); _Tp __y = __z.imag(); const _Tp __s = max(abs(__x), abs(__y)); if (__s == _Tp()) // well ... return __s; __x /= __s; __y /= __s; return __s * sqrt(__x * __x + __y * __y); } template<typename _Tp> inline _Tp arg(const complex<_Tp>& __z) { return atan2(__z.imag(), __z.real()); } // 26.2.7/5: norm(__z) returns the squared magintude of __z. // As defined, norm() is -not- a norm is the common mathematical // sens used in numerics. The helper class _Norm_helper<> tries to // distinguish between builtin floating point and the rest, so as // to deliver an answer as close as possible to the real value. template<bool> struct _Norm_helper { template<typename _Tp> static inline _Tp _S_do_it(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return __x * __x + __y * __y; } }; template<> struct _Norm_helper<true> { template<typename _Tp> static inline _Tp _S_do_it(const complex<_Tp>& __z) { _Tp __res = abs(__z); return __res * __res; } }; template<typename _Tp> inline _Tp norm(const complex<_Tp>& __z) { return _Norm_helper<__is_floating<_Tp>::_M_type && !_GLIBCPP_FAST_MATH>::_S_do_it(__z); } template<typename _Tp> inline complex<_Tp> polar(const _Tp& __rho, const _Tp& __theta) { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); } template<typename _Tp> inline complex<_Tp> conj(const complex<_Tp>& __z) { return complex<_Tp>(__z.real(), -__z.imag()); } // Transcendentals template<typename _Tp> inline complex<_Tp> cos(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y)); } template<typename _Tp> inline complex<_Tp> cosh(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y)); } template<typename _Tp> inline complex<_Tp> exp(const complex<_Tp>& __z) { return polar(exp(__z.real()), __z.imag()); } template<typename _Tp> inline complex<_Tp> log(const complex<_Tp>& __z) { return complex<_Tp>(log(abs(__z)), arg(__z)); } template<typename _Tp> inline complex<_Tp> log10(const complex<_Tp>& __z) { return log(__z) / log(_Tp(10.0)); } template<typename _Tp> inline complex<_Tp> sin(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y)); } template<typename _Tp> inline complex<_Tp> sinh(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y)); } template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>& __z) { _Tp __x = __z.real(); _Tp __y = __z.imag(); if (__x == _Tp()) { _Tp __t = sqrt(abs(__y) / 2);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -