⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 std_complex.h

📁 gcc-you can use this code to learn something about gcc, and inquire further into linux,
💻 H
📖 第 1 页 / 共 2 页
字号:
// The template and inlines for the -*- C++ -*- complex number classes.// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002// Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library.  This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU General Public License for more details.// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING.  If not, write to the Free// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,// USA.// As a special exception, you may use this file as part of a free software// library without restriction.  Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License.  This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License.//// ISO C++ 14882: 26.2  Complex Numbers// Note: this is not a conforming implementation.// Initially implemented by Ulrich Drepper <drepper@cygnus.com>// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>///** @file complex *  This is a Standard C++ Library header.  You should @c #include this header *  in your programs, rather than any of the "st[dl]_*.h" implementation files. */#ifndef _CPP_COMPLEX#define _CPP_COMPLEX	1#pragma GCC system_header#include <bits/c++config.h>#include <bits/cpp_type_traits.h>#include <cmath>#include <sstream>namespace std{  // Forward declarations  template<typename _Tp> class complex;  template<> class complex<float>;  template<> class complex<double>;  template<> class complex<long double>;  template<typename _Tp> _Tp abs(const complex<_Tp>&);  template<typename _Tp> _Tp arg(const complex<_Tp>&);  template<typename _Tp> _Tp norm(const complex<_Tp>&);  template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&);  template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0);  // Transcendentals:  template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&);  template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&);  template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&);  template<typename _Tp> complex<_Tp> log(const complex<_Tp>&);  template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&);  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int);  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&);  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, 					   const complex<_Tp>&);  template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);  template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&);  template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&);  template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&);  template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&);  template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&);          // 26.2.2  Primary template class complex  template<typename _Tp>    class complex    {    public:      typedef _Tp value_type;            complex(const _Tp& = _Tp(), const _Tp & = _Tp());      // Let's the compiler synthetize the copy constructor         // complex (const complex<_Tp>&);      template<typename _Up>        complex(const complex<_Up>&);              _Tp real() const;      _Tp imag() const;      complex<_Tp>& operator=(const _Tp&);      complex<_Tp>& operator+=(const _Tp&);      complex<_Tp>& operator-=(const _Tp&);      complex<_Tp>& operator*=(const _Tp&);      complex<_Tp>& operator/=(const _Tp&);      // Let's the compiler synthetize the      // copy and assignment operator      // complex<_Tp>& operator= (const complex<_Tp>&);      template<typename _Up>        complex<_Tp>& operator=(const complex<_Up>&);      template<typename _Up>        complex<_Tp>& operator+=(const complex<_Up>&);      template<typename _Up>        complex<_Tp>& operator-=(const complex<_Up>&);      template<typename _Up>        complex<_Tp>& operator*=(const complex<_Up>&);      template<typename _Up>        complex<_Tp>& operator/=(const complex<_Up>&);    private:      _Tp _M_real, _M_imag;    };  template<typename _Tp>    inline _Tp    complex<_Tp>::real() const { return _M_real; }  template<typename _Tp>    inline _Tp    complex<_Tp>::imag() const { return _M_imag; }  template<typename _Tp>    inline     complex<_Tp>::complex(const _Tp& __r, const _Tp& __i)    : _M_real(__r), _M_imag(__i) { }  template<typename _Tp>    template<typename _Up>    inline     complex<_Tp>::complex(const complex<_Up>& __z)    : _M_real(__z.real()), _M_imag(__z.imag()) { }          template<typename _Tp>    complex<_Tp>&    complex<_Tp>::operator=(const _Tp& __t)    {     _M_real = __t;     _M_imag = _Tp();     return *this;    }   // 26.2.5/1  template<typename _Tp>    inline complex<_Tp>&    complex<_Tp>::operator+=(const _Tp& __t)    {      _M_real += __t;      return *this;    }  // 26.2.5/3  template<typename _Tp>    inline complex<_Tp>&    complex<_Tp>::operator-=(const _Tp& __t)    {      _M_real -= __t;      return *this;    }  // 26.2.5/5  template<typename _Tp>    complex<_Tp>&    complex<_Tp>::operator*=(const _Tp& __t)    {      _M_real *= __t;      _M_imag *= __t;      return *this;    }  // 26.2.5/7  template<typename _Tp>    complex<_Tp>&    complex<_Tp>::operator/=(const _Tp& __t)    {      _M_real /= __t;      _M_imag /= __t;      return *this;    }  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator=(const complex<_Up>& __z)    {      _M_real = __z.real();      _M_imag = __z.imag();      return *this;    }  // 26.2.5/9  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator+=(const complex<_Up>& __z)    {      _M_real += __z.real();      _M_imag += __z.imag();      return *this;    }  // 26.2.5/11  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator-=(const complex<_Up>& __z)    {      _M_real -= __z.real();      _M_imag -= __z.imag();      return *this;    }  // 26.2.5/13  // XXX: This is a grammar school implementation.  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator*=(const complex<_Up>& __z)    {      const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag();      _M_imag = _M_real * __z.imag() + _M_imag * __z.real();      _M_real = __r;      return *this;    }  // 26.2.5/15  // XXX: This is a grammar school implementation.  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator/=(const complex<_Up>& __z)    {      const _Tp __r =  _M_real * __z.real() + _M_imag * __z.imag();      const _Tp __n = norm(__z);      _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n;      _M_real = __r / __n;      return *this;    }      // Operators:  template<typename _Tp>    inline complex<_Tp>    operator+(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__x) += __y; }  template<typename _Tp>    inline complex<_Tp>    operator+(const complex<_Tp>& __x, const _Tp& __y)    { return complex<_Tp> (__x) += __y; }  template<typename _Tp>    inline complex<_Tp>    operator+(const _Tp& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__y) += __x; }  template<typename _Tp>    inline complex<_Tp>    operator-(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__x) -= __y; }      template<typename _Tp>    inline complex<_Tp>    operator-(const complex<_Tp>& __x, const _Tp& __y)    { return complex<_Tp> (__x) -= __y; }  template<typename _Tp>    inline complex<_Tp>    operator-(const _Tp& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__x) -= __y; }  template<typename _Tp>    inline complex<_Tp>    operator*(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__x) *= __y; }  template<typename _Tp>    inline complex<_Tp>    operator*(const complex<_Tp>& __x, const _Tp& __y)    { return complex<_Tp> (__x) *= __y; }  template<typename _Tp>    inline complex<_Tp>    operator*(const _Tp& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__y) *= __x; }  template<typename _Tp>    inline complex<_Tp>    operator/(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__x) /= __y; }      template<typename _Tp>    inline complex<_Tp>    operator/(const complex<_Tp>& __x, const _Tp& __y)    { return complex<_Tp> (__x) /= __y; }  template<typename _Tp>    inline complex<_Tp>    operator/(const _Tp& __x, const complex<_Tp>& __y)    { return complex<_Tp> (__x) /= __y; }  template<typename _Tp>    inline complex<_Tp>    operator+(const complex<_Tp>& __x)    { return __x; }  template<typename _Tp>    inline complex<_Tp>    operator-(const complex<_Tp>& __x)    {  return complex<_Tp>(-__x.real(), -__x.imag()); }  template<typename _Tp>    inline bool    operator==(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return __x.real() == __y.real() && __x.imag() == __y.imag(); }  template<typename _Tp>    inline bool    operator==(const complex<_Tp>& __x, const _Tp& __y)    { return __x.real() == __y && __x.imag() == _Tp(); }  template<typename _Tp>    inline bool    operator==(const _Tp& __x, const complex<_Tp>& __y)    { return __x == __y.real() && _Tp() == __y.imag(); }  template<typename _Tp>    inline bool    operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return __x.real() != __y.real() || __x.imag() != __y.imag(); }  template<typename _Tp>    inline bool    operator!=(const complex<_Tp>& __x, const _Tp& __y)    { return __x.real() != __y || __x.imag() != _Tp(); }  template<typename _Tp>    inline bool    operator!=(const _Tp& __x, const complex<_Tp>& __y)    { return __x != __y.real() || _Tp() != __y.imag(); }  template<typename _Tp, typename _CharT, class _Traits>    basic_istream<_CharT, _Traits>&    operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x)    {      _Tp __re_x, __im_x;      _CharT __ch;      __is >> __ch;      if (__ch == '(') 	{	  __is >> __re_x >> __ch;	  if (__ch == ',') 	    {	      __is >> __im_x >> __ch;	      if (__ch == ')') 		__x = complex<_Tp>(__re_x, __im_x);	      else		__is.setstate(ios_base::failbit);	    }	  else if (__ch == ')') 	    __x = complex<_Tp>(__re_x, _Tp(0));	  else	    __is.setstate(ios_base::failbit);	}      else 	{	  __is.putback(__ch);	  __is >> __re_x;	  __x = complex<_Tp>(__re_x, _Tp(0));	}      return __is;    }  template<typename _Tp, typename _CharT, class _Traits>    basic_ostream<_CharT, _Traits>&    operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)    {      basic_ostringstream<_CharT, _Traits> __s;      __s.flags(__os.flags());      __s.imbue(__os.getloc());      __s.precision(__os.precision());      __s << '(' << __x.real() << ',' << __x.imag() << ')';      return __os << __s.str();    }  // Values  template<typename _Tp>    inline _Tp    real(const complex<_Tp>& __z)    { return __z.real(); }      template<typename _Tp>    inline _Tp    imag(const complex<_Tp>& __z)    { return __z.imag(); }  template<typename _Tp>    inline _Tp    abs(const complex<_Tp>& __z)    {      _Tp __x = __z.real();      _Tp __y = __z.imag();      const _Tp __s = max(abs(__x), abs(__y));      if (__s == _Tp())  // well ...        return __s;      __x /= __s;       __y /= __s;      return __s * sqrt(__x * __x + __y * __y);    }  template<typename _Tp>    inline _Tp    arg(const complex<_Tp>& __z)    { return atan2(__z.imag(), __z.real()); }  // 26.2.7/5: norm(__z) returns the squared magintude of __z.  //     As defined, norm() is -not- a norm is the common mathematical  //     sens used in numerics.  The helper class _Norm_helper<> tries to  //     distinguish between builtin floating point and the rest, so as  //     to deliver an answer as close as possible to the real value.  template<bool>    struct _Norm_helper    {      template<typename _Tp>        static inline _Tp _S_do_it(const complex<_Tp>& __z)        {          const _Tp __x = __z.real();          const _Tp __y = __z.imag();          return __x * __x + __y * __y;        }    };  template<>    struct _Norm_helper<true>    {      template<typename _Tp>        static inline _Tp _S_do_it(const complex<_Tp>& __z)        {          _Tp __res = abs(__z);          return __res * __res;        }    };    template<typename _Tp>    inline _Tp    norm(const complex<_Tp>& __z)    {      return _Norm_helper<__is_floating<_Tp>::_M_type && !_GLIBCPP_FAST_MATH>::_S_do_it(__z);    }  template<typename _Tp>    inline complex<_Tp>    polar(const _Tp& __rho, const _Tp& __theta)    { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); }  template<typename _Tp>    inline complex<_Tp>    conj(const complex<_Tp>& __z)    { return complex<_Tp>(__z.real(), -__z.imag()); }    // Transcendentals  template<typename _Tp>    inline complex<_Tp>    cos(const complex<_Tp>& __z)    {      const _Tp __x = __z.real();      const _Tp __y = __z.imag();      return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));    }  template<typename _Tp>    inline complex<_Tp>    cosh(const complex<_Tp>& __z)    {      const _Tp __x = __z.real();      const _Tp __y = __z.imag();      return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));    }  template<typename _Tp>    inline complex<_Tp>    exp(const complex<_Tp>& __z)    { return polar(exp(__z.real()), __z.imag()); }  template<typename _Tp>    inline complex<_Tp>    log(const complex<_Tp>& __z)    { return complex<_Tp>(log(abs(__z)), arg(__z)); }  template<typename _Tp>    inline complex<_Tp>    log10(const complex<_Tp>& __z)    { return log(__z) / log(_Tp(10.0)); }  template<typename _Tp>    inline complex<_Tp>    sin(const complex<_Tp>& __z)    {      const _Tp __x = __z.real();      const _Tp __y = __z.imag();      return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y));     }  template<typename _Tp>    inline complex<_Tp>    sinh(const complex<_Tp>& __z)    {      const _Tp __x = __z.real();      const _Tp  __y = __z.imag();      return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));    }  template<typename _Tp>    complex<_Tp>    sqrt(const complex<_Tp>& __z)    {      _Tp __x = __z.real();      _Tp __y = __z.imag();      if (__x == _Tp())        {          _Tp __t = sqrt(abs(__y) / 2);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -