📄 lb1sf68.asm
字号:
/* libgcc routines for 68000 w/o floating-point hardware. Copyright (C) 1994, 1996, 1997, 1998 Free Software Foundation, Inc.This file is part of GNU CC.GNU CC is free software; you can redistribute it and/or modify itunder the terms of the GNU General Public License as published by theFree Software Foundation; either version 2, or (at your option) anylater version.In addition to the permissions in the GNU General Public License, theFree Software Foundation gives you unlimited permission to link thecompiled version of this file with other programs, and to distributethose programs without any restriction coming from the use of thisfile. (The General Public License restrictions do apply in otherrespects; for example, they cover modification of the file, anddistribution when not linked into another program.)This file is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNUGeneral Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; see the file COPYING. If not, write tothe Free Software Foundation, 59 Temple Place - Suite 330,Boston, MA 02111-1307, USA. *//* As a special exception, if you link this library with files compiled with GCC to produce an executable, this does not cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. *//* Use this one for any 680x0; assumes no floating point hardware. The trailing " '" appearing on some lines is for ANSI preprocessors. Yuk. Some of this code comes from MINIX, via the folks at ericsson. D. V. Henkel-Wallace (gumby@cygnus.com) Fete Bastille, 1992*//* These are predefined by new versions of GNU cpp. */#ifndef __USER_LABEL_PREFIX__#define __USER_LABEL_PREFIX__ _#endif#ifndef __REGISTER_PREFIX__#define __REGISTER_PREFIX__#endif#ifndef __IMMEDIATE_PREFIX__#define __IMMEDIATE_PREFIX__ ##endif/* ANSI concatenation macros. */#define CONCAT1(a, b) CONCAT2(a, b)#define CONCAT2(a, b) a ## b/* Use the right prefix for global labels. */#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)/* Use the right prefix for registers. */#define REG(x) CONCAT1 (__REGISTER_PREFIX__, x)/* Use the right prefix for immediate values. */#define IMM(x) CONCAT1 (__IMMEDIATE_PREFIX__, x)#define d0 REG (d0)#define d1 REG (d1)#define d2 REG (d2)#define d3 REG (d3)#define d4 REG (d4)#define d5 REG (d5)#define d6 REG (d6)#define d7 REG (d7)#define a0 REG (a0)#define a1 REG (a1)#define a2 REG (a2)#define a3 REG (a3)#define a4 REG (a4)#define a5 REG (a5)#define a6 REG (a6)#define fp REG (fp)#define sp REG (sp)#ifdef L_floatex| This is an attempt at a decent floating point (single, double and | extended double) code for the GNU C compiler. It should be easy to| adapt to other compilers (but beware of the local labels!).| Starting date: 21 October, 1990| It is convenient to introduce the notation (s,e,f) for a floating point| number, where s=sign, e=exponent, f=fraction. We will call a floating| point number fpn to abbreviate, independently of the precision.| Let MAX_EXP be in each case the maximum exponent (255 for floats, 1023 | for doubles and 16383 for long doubles). We then have the following | different cases:| 1. Normalized fpns have 0 < e < MAX_EXP. They correspond to | (-1)^s x 1.f x 2^(e-bias-1).| 2. Denormalized fpns have e=0. They correspond to numbers of the form| (-1)^s x 0.f x 2^(-bias).| 3. +/-INFINITY have e=MAX_EXP, f=0.| 4. Quiet NaN (Not a Number) have all bits set.| 5. Signaling NaN (Not a Number) have s=0, e=MAX_EXP, f=1.|=============================================================================| exceptions|=============================================================================| This is the floating point condition code register (_fpCCR):|| struct {| short _exception_bits; | short _trap_enable_bits; | short _sticky_bits;| short _rounding_mode;| short _format;| short _last_operation;| union {| float sf;| double df;| } _operand1;| union {| float sf;| double df;| } _operand2;| } _fpCCR; .data .even .globl SYM (_fpCCR) SYM (_fpCCR):__exception_bits: .word 0__trap_enable_bits: .word 0__sticky_bits: .word 0__rounding_mode: .word ROUND_TO_NEAREST__format: .word NIL__last_operation: .word NOOP__operand1: .long 0 .long 0__operand2: .long 0 .long 0| Offsets:EBITS = __exception_bits - SYM (_fpCCR)TRAPE = __trap_enable_bits - SYM (_fpCCR)STICK = __sticky_bits - SYM (_fpCCR)ROUND = __rounding_mode - SYM (_fpCCR)FORMT = __format - SYM (_fpCCR)LASTO = __last_operation - SYM (_fpCCR)OPER1 = __operand1 - SYM (_fpCCR)OPER2 = __operand2 - SYM (_fpCCR)| The following exception types are supported:INEXACT_RESULT = 0x0001UNDERFLOW = 0x0002OVERFLOW = 0x0004DIVIDE_BY_ZERO = 0x0008INVALID_OPERATION = 0x0010| The allowed rounding modes are:UNKNOWN = -1ROUND_TO_NEAREST = 0 | round result to nearest representable valueROUND_TO_ZERO = 1 | round result towards zeroROUND_TO_PLUS = 2 | round result towards plus infinityROUND_TO_MINUS = 3 | round result towards minus infinity| The allowed values of format are:NIL = 0SINGLE_FLOAT = 1DOUBLE_FLOAT = 2LONG_FLOAT = 3| The allowed values for the last operation are:NOOP = 0ADD = 1MULTIPLY = 2DIVIDE = 3NEGATE = 4COMPARE = 5EXTENDSFDF = 6TRUNCDFSF = 7|=============================================================================| __clear_sticky_bits|=============================================================================| The sticky bits are normally not cleared (thus the name), whereas the | exception type and exception value reflect the last computation. | This routine is provided to clear them (you can also write to _fpCCR,| since it is globally visible). .globl SYM (__clear_sticky_bit) .text .even| void __clear_sticky_bits(void);SYM (__clear_sticky_bit): lea SYM (_fpCCR),a0#ifndef __mcf5200__ movew IMM (0),a0@(STICK)#else clr.w a0@(STICK)#endif rts|=============================================================================| $_exception_handler|============================================================================= .globl $_exception_handler .text .even| This is the common exit point if an exception occurs.| NOTE: it is NOT callable from C!| It expects the exception type in d7, the format (SINGLE_FLOAT,| DOUBLE_FLOAT or LONG_FLOAT) in d6, and the last operation code in d5.| It sets the corresponding exception and sticky bits, and the format. | Depending on the format if fills the corresponding slots for the | operands which produced the exception (all this information is provided| so if you write your own exception handlers you have enough information| to deal with the problem).| Then checks to see if the corresponding exception is trap-enabled, | in which case it pushes the address of _fpCCR and traps through | trap FPTRAP (15 for the moment).FPTRAP = 15$_exception_handler: lea SYM (_fpCCR),a0 movew d7,a0@(EBITS) | set __exception_bits#ifndef __mcf5200__ orw d7,a0@(STICK) | and __sticky_bits#else movew a0@(STICK),d4 orl d7,d4 movew d4,a0@(STICK)#endif movew d6,a0@(FORMT) | and __format movew d5,a0@(LASTO) | and __last_operation| Now put the operands in place:#ifndef __mcf5200__ cmpw IMM (SINGLE_FLOAT),d6#else cmpl IMM (SINGLE_FLOAT),d6#endif beq 1f movel a6@(8),a0@(OPER1) movel a6@(12),a0@(OPER1+4) movel a6@(16),a0@(OPER2) movel a6@(20),a0@(OPER2+4) bra 2f1: movel a6@(8),a0@(OPER1) movel a6@(12),a0@(OPER2)2:| And check whether the exception is trap-enabled:#ifndef __mcf5200__ andw a0@(TRAPE),d7 | is exception trap-enabled?#else clrl d6 movew a0@(TRAPE),d6 andl d6,d7#endif beq 1f | no, exit pea SYM (_fpCCR) | yes, push address of _fpCCR trap IMM (FPTRAP) | and trap#ifndef __mcf5200__1: moveml sp@+,d2-d7 | restore data registers#else1: moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here.#endif unlk a6 | and return rts#endif /* L_floatex */#ifdef L_mulsi3 .text .proc .globl SYM (__mulsi3)SYM (__mulsi3): movew sp@(4), d0 /* x0 -> d0 */ muluw sp@(10), d0 /* x0*y1 */ movew sp@(6), d1 /* x1 -> d1 */ muluw sp@(8), d1 /* x1*y0 */#ifndef __mcf5200__ addw d1, d0#else addl d1, d0#endif swap d0 clrw d0 movew sp@(6), d1 /* x1 -> d1 */ muluw sp@(10), d1 /* x1*y1 */ addl d1, d0 rts#endif /* L_mulsi3 */#ifdef L_udivsi3 .text .proc .globl SYM (__udivsi3)SYM (__udivsi3):#ifndef __mcf5200__ movel d2, sp@- movel sp@(12), d1 /* d1 = divisor */ movel sp@(8), d0 /* d0 = dividend */ cmpl IMM (0x10000), d1 /* divisor >= 2 ^ 16 ? */ jcc L3 /* then try next algorithm */ movel d0, d2 clrw d2 swap d2 divu d1, d2 /* high quotient in lower word */ movew d2, d0 /* save high quotient */ swap d0 movew sp@(10), d2 /* get low dividend + high rest */ divu d1, d2 /* low quotient */ movew d2, d0 jra L6L3: movel d1, d2 /* use d2 as divisor backup */L4: lsrl IMM (1), d1 /* shift divisor */ lsrl IMM (1), d0 /* shift dividend */ cmpl IMM (0x10000), d1 /* still divisor >= 2 ^ 16 ? */ jcc L4 divu d1, d0 /* now we have 16 bit divisor */ andl IMM (0xffff), d0 /* mask out divisor, ignore remainder *//* Multiply the 16 bit tentative quotient with the 32 bit divisor. Because of the operand ranges, this might give a 33 bit product. If this product is greater than the dividend, the tentative quotient was too large. */ movel d2, d1 mulu d0, d1 /* low part, 32 bits */ swap d2 mulu d0, d2 /* high part, at most 17 bits */ swap d2 /* align high part with low part */ tstw d2 /* high part 17 bits? */ jne L5 /* if 17 bits, quotient was too large */ addl d2, d1 /* add parts */ jcs L5 /* if sum is 33 bits, quotient was too large */ cmpl sp@(8), d1 /* compare the sum with the dividend */ jls L6 /* if sum > dividend, quotient was too large */L5: subql IMM (1), d0 /* adjust quotient */L6: movel sp@+, d2 rts#else /* __mcf5200__ *//* Coldfire implementation of non-restoring division algorithm from Hennessy & Patterson, Appendix A. */ link a6,IMM (-12) moveml d2-d4,sp@ movel a6@(8),d0 movel a6@(12),d1 clrl d2 | clear p moveq IMM (31),d4L1: addl d0,d0 | shift reg pair (p,a) one bit left addxl d2,d2 movl d2,d3 | subtract b from p, store in tmp. subl d1,d3 jcs L2 | if no carry, bset IMM (0),d0 | set the low order bit of a to 1, movl d3,d2 | and store tmp in p.L2: subql IMM (1),d4 jcc L1 moveml sp@,d2-d4 | restore data registers unlk a6 | and return rts#endif /* __mcf5200__ */#endif /* L_udivsi3 */#ifdef L_divsi3 .text .proc .globl SYM (__divsi3)SYM (__divsi3): movel d2, sp@- moveq IMM (1), d2 /* sign of result stored in d2 (=1 or =-1) */ movel sp@(12), d1 /* d1 = divisor */ jpl L1 negl d1#ifndef __mcf5200__ negb d2 /* change sign because divisor <0 */#else negl d2 /* change sign because divisor <0 */#endifL1: movel sp@(8), d0 /* d0 = dividend */ jpl L2 negl d0#ifndef __mcf5200__ negb d2#else negl d2#endifL2: movel d1, sp@- movel d0, sp@- jbsr SYM (__udivsi3) /* divide abs(dividend) by abs(divisor) */ addql IMM (8), sp tstb d2 jpl L3 negl d0L3: movel sp@+, d2 rts#endif /* L_divsi3 */#ifdef L_umodsi3 .text .proc .globl SYM (__umodsi3)SYM (__umodsi3): movel sp@(8), d1 /* d1 = divisor */ movel sp@(4), d0 /* d0 = dividend */ movel d1, sp@- movel d0, sp@- jbsr SYM (__udivsi3) addql IMM (8), sp movel sp@(8), d1 /* d1 = divisor */#ifndef __mcf5200__ movel d1, sp@- movel d0, sp@- jbsr SYM (__mulsi3) /* d0 = (a/b)*b */ addql IMM (8), sp#else mulsl d1,d0#endif movel sp@(4), d1 /* d1 = dividend */ subl d0, d1 /* d1 = a - (a/b)*b */ movel d1, d0 rts#endif /* L_umodsi3 */#ifdef L_modsi3 .text .proc .globl SYM (__modsi3)SYM (__modsi3): movel sp@(8), d1 /* d1 = divisor */ movel sp@(4), d0 /* d0 = dividend */ movel d1, sp@- movel d0, sp@- jbsr SYM (__divsi3) addql IMM (8), sp movel sp@(8), d1 /* d1 = divisor */#ifndef __mcf5200__ movel d1, sp@- movel d0, sp@- jbsr SYM (__mulsi3) /* d0 = (a/b)*b */ addql IMM (8), sp#else mulsl d1,d0#endif movel sp@(4), d1 /* d1 = dividend */ subl d0, d1 /* d1 = a - (a/b)*b */ movel d1, d0 rts#endif /* L_modsi3 */#ifdef L_double .globl SYM (_fpCCR) .globl $_exception_handlerQUIET_NaN = 0xffffffffD_MAX_EXP = 0x07ffD_BIAS = 1022DBL_MAX_EXP = D_MAX_EXP - D_BIASDBL_MIN_EXP = 1 - D_BIASDBL_MANT_DIG = 53INEXACT_RESULT = 0x0001UNDERFLOW = 0x0002OVERFLOW = 0x0004DIVIDE_BY_ZERO = 0x0008INVALID_OPERATION = 0x0010DOUBLE_FLOAT = 2NOOP = 0ADD = 1MULTIPLY = 2DIVIDE = 3NEGATE = 4COMPARE = 5EXTENDSFDF = 6TRUNCDFSF = 7UNKNOWN = -1ROUND_TO_NEAREST = 0 | round result to nearest representable valueROUND_TO_ZERO = 1 | round result towards zeroROUND_TO_PLUS = 2 | round result towards plus infinityROUND_TO_MINUS = 3 | round result towards minus infinity| Entry points: .globl SYM (__adddf3) .globl SYM (__subdf3) .globl SYM (__muldf3) .globl SYM (__divdf3)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -