📄 lib1funcs.asm
字号:
add dividend, workLover6: mov curbit, ip mov work, #2 ror curbit, work tst overdone, curbit beq Lover7 lsr work, divisor, #2 add dividend, workLover7: mov curbit, ip mov work, #1 ror curbit, work tst overdone, curbit beq Lgot_result lsr work, divisor, #1 add dividend, work .endifLgot_result:.endm /* ------------------------------------------------------------------------ *//* Start of the Real Functions *//* ------------------------------------------------------------------------ */#ifdef L_udivsi3 FUNC_START udivsi3#ifdef __thumb__ cmp divisor, #0 beq Ldiv0 mov curbit, #1 mov result, #0 push { work } cmp dividend, divisor blo Lgot_result THUMB_DIV_MOD_BODY 0 mov r0, result pop { work } RET#else /* ARM version. */ cmp divisor, #0 beq Ldiv0 mov curbit, #1 mov result, #0 cmp dividend, divisor blo Lgot_result ARM_DIV_MOD_BODY 0 mov r0, result RET #endif /* ARM version */ FUNC_END udivsi3#endif /* L_udivsi3 *//* ------------------------------------------------------------------------ */#ifdef L_umodsi3 FUNC_START umodsi3#ifdef __thumb__ cmp divisor, #0 beq Ldiv0 mov curbit, #1 cmp dividend, divisor bhs Lover10 RET Lover10: push { work } THUMB_DIV_MOD_BODY 1 pop { work } RET #else /* ARM version. */ cmp divisor, #0 beq Ldiv0 cmp divisor, #1 cmpne dividend, divisor moveq dividend, #0 RETc(lo) mov curbit, #1 ARM_DIV_MOD_BODY 1 RET #endif /* ARM version. */ FUNC_END umodsi3#endif /* L_umodsi3 *//* ------------------------------------------------------------------------ */#ifdef L_divsi3 FUNC_START divsi3 #ifdef __thumb__ cmp divisor, #0 beq Ldiv0 push { work } mov work, dividend eor work, divisor @ Save the sign of the result. mov ip, work mov curbit, #1 mov result, #0 cmp divisor, #0 bpl Lover10 neg divisor, divisor @ Loops below use unsigned.Lover10: cmp dividend, #0 bpl Lover11 neg dividend, dividendLover11: cmp dividend, divisor blo Lgot_result THUMB_DIV_MOD_BODY 0 mov r0, result mov work, ip cmp work, #0 bpl Lover12 neg r0, r0Lover12: pop { work } RET#else /* ARM version. */ eor ip, dividend, divisor @ Save the sign of the result. mov curbit, #1 mov result, #0 cmp divisor, #0 rsbmi divisor, divisor, #0 @ Loops below use unsigned. beq Ldiv0 cmp dividend, #0 rsbmi dividend, dividend, #0 cmp dividend, divisor blo Lgot_result ARM_DIV_MOD_BODY 0 mov r0, result cmp ip, #0 rsbmi r0, r0, #0 RET #endif /* ARM version */ FUNC_END divsi3#endif /* L_divsi3 *//* ------------------------------------------------------------------------ */#ifdef L_modsi3 FUNC_START modsi3#ifdef __thumb__ mov curbit, #1 cmp divisor, #0 beq Ldiv0 bpl Lover10 neg divisor, divisor @ Loops below use unsigned.Lover10: push { work } @ Need to save the sign of the dividend, unfortunately, we need @ work later on. Must do this after saving the original value of @ the work register, because we will pop this value off first. push { dividend } cmp dividend, #0 bpl Lover11 neg dividend, dividendLover11: cmp dividend, divisor blo Lgot_result THUMB_DIV_MOD_BODY 1 pop { work } cmp work, #0 bpl Lover12 neg dividend, dividendLover12: pop { work } RET #else /* ARM version. */ cmp divisor, #0 rsbmi divisor, divisor, #0 @ Loops below use unsigned. beq Ldiv0 @ Need to save the sign of the dividend, unfortunately, we need @ ip later on; this is faster than pushing lr and using that. str dividend, [sp, #-4]! cmp dividend, #0 @ Test dividend against zero rsbmi dividend, dividend, #0 @ If negative make positive cmp dividend, divisor @ else if zero return zero blo Lgot_result @ if smaller return dividend mov curbit, #1 ARM_DIV_MOD_BODY 1 ldr ip, [sp], #4 cmp ip, #0 rsbmi dividend, dividend, #0 RET #endif /* ARM version */ FUNC_END modsi3#endif /* L_modsi3 *//* ------------------------------------------------------------------------ */#ifdef L_dvmd_tls FUNC_START div0 RET SIZE (__div0) #endif /* L_divmodsi_tools *//* ------------------------------------------------------------------------ */#ifdef L_dvmd_lnx@ GNU/Linux division-by zero handler. Used in place of L_dvmd_tls/* Constants taken from <asm/unistd.h> and <asm/signal.h> */#define SIGFPE 8#define __NR_SYSCALL_BASE 0x900000#define __NR_getpid (__NR_SYSCALL_BASE+ 20)#define __NR_kill (__NR_SYSCALL_BASE+ 37) FUNC_START div0 stmfd sp!, {r1, lr} swi __NR_getpid cmn r0, #1000 ldmhsfd sp!, {r1, pc}RETCOND @ not much we can do mov r1, #SIGFPE swi __NR_kill#ifdef __THUMB_INTERWORK__ ldmfd sp!, {r1, lr} bx lr#else ldmfd sp!, {r1, pc}RETCOND#endif SIZE (__div0) #endif /* L_dvmd_lnx *//* ------------------------------------------------------------------------ *//* These next two sections are here despite the fact that they contain Thumb assembler because their presence allows interworked code to be linked even when the GCC library is this one. */ /* Do not build the interworking functions when the target architecture does not support Thumb instructions. (This can be a multilib option). */#if defined L_call_via_rX && (defined __ARM_ARCH_4T__ || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__)/* These labels & instructions are used by the Arm/Thumb interworking code. The address of function to be called is loaded into a register and then one of these labels is called via a BL instruction. This puts the return address into the link register with the bottom bit set, and the code here switches to the correct mode before executing the function. */ .text .align 0 .force_thumb.macro call_via register THUMB_FUNC_START _call_via_\register bx \register nop SIZE (_call_via_\register).endm call_via r0 call_via r1 call_via r2 call_via r3 call_via r4 call_via r5 call_via r6 call_via r7 call_via r8 call_via r9 call_via sl call_via fp call_via ip call_via sp call_via lr#endif /* L_call_via_rX *//* ------------------------------------------------------------------------ *//* Do not build the interworking functions when the target architecture does not support Thumb instructions. (This can be a multilib option). */#if defined L_interwork_call_via_rX && (defined __ARM_ARCH_4T__ || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__)/* These labels & instructions are used by the Arm/Thumb interworking code, when the target address is in an unknown instruction set. The address of function to be called is loaded into a register and then one of these labels is called via a BL instruction. This puts the return address into the link register with the bottom bit set, and the code here switches to the correct mode before executing the function. Unfortunately the target code cannot be relied upon to return via a BX instruction, so instead we have to store the resturn address on the stack and allow the called function to return here instead. Upon return we recover the real return address and use a BX to get back to Thumb mode. */ .text .align 0 .code 32 .globl _arm_return_arm_return: ldmia r13!, {r12} bx r12 .code 16.macro interwork register .code 16 THUMB_FUNC_START _interwork_call_via_\register bx pc nop .code 32 .globl .Lchange_\register.Lchange_\register: tst \register, #1 stmeqdb r13!, {lr} adreq lr, _arm_return bx \register SIZE (_interwork_call_via_\register).endm interwork r0 interwork r1 interwork r2 interwork r3 interwork r4 interwork r5 interwork r6 interwork r7 interwork r8 interwork r9 interwork sl interwork fp interwork ip interwork sp /* The LR case has to be handled a little differently... */ .code 16 THUMB_FUNC_START _interwork_call_via_lr bx pc nop .code 32 .globl .Lchange_lr.Lchange_lr: tst lr, #1 stmeqdb r13!, {lr} mov ip, lr adreq lr, _arm_return bx ip SIZE (_interwork_call_via_lr) #endif /* L_interwork_call_via_rX */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -