⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zm01xg_5_ed2.m

📁 matlab仿真通过的降噪程序
💻 M
字号:
 clear all;
%  [y1,fs,bits]=wavread('F:\noise enhancing\wav\今天雨好大.wav');      %input clean speech今天雨好大
%  y1=y1/max(abs(y1));%语音信号归一化
%  %wavwrite(y1,8000,8,'F:\noise enhancing\voise\5.wav');
%  figure(1);
%  plot(y1);                                                  %depict clean speech
% 
% %  [noise,fs1,bits1]=wavread('F:\noise enhancing\wav\今天雨好大_noise.wav');  %input noise今天雨好大_noise
% %  y=mixsig(y1,noise,0);                  % mix clean speech with noise according to definite SNR
% %  y=y/max(abs(y));%归一化
% %  wavwrite(y,8000,8,'F:\noise enhancing\wav\mymasking_s&w(5).wav');
% %  figure(2);
% %  plot(y);                          %depict noisy speech
% 
% [noise,fs1,bits1]=wavread('F:\noise enhancing\wav\今天雨好大_noise.wav');
% y=mixsig(y1,noise,0);% 混合
% y=y/max(abs(y));%归一化
% wavwrite(y,8000,8,'F:\noise enhancing\wav\mymasking_s&w(0).wav');
% figure(2);
% plot(y);

[y,fs,bits]=wavread('F:\noise enhancing\noise\denoise\stc-launch[1].wav'); 
%[y,fs,bits]=wavread('F:\noise enhancing\wav\5.wav');%mys&w16bit.F:\noise enhancing\wav\wav  zhuiqiu_s&w(10) mys&w16bit
frame = 256;    % Defining frame size
shift=128;
win=hamming(256);

for j1 = 1:length(y),
   signal(j1) = y(j1);
end;

ps_noise=zeros(length(signal)/frame,frame);                %initialize
frame_temp = zeros(length(signal)/frame,frame);

hh = 0; 
   for k = 1 : 5,
       for l = 1 : frame,
          b(l) = signal(hh+l);
      end;
        hh = hh + frame;
        frame_temp(k,1:frame) = abs(fft(b));                      %fft for the first 5 frames
        ps_noise(k,1:frame) = (frame_temp(k,1:frame).*conj(frame_temp(k,1:frame)))/frame;   %power
        %ps_noise(1,1:frame)= (sum(ps_noise(1:k,l))/20);          % Sum of the power spectral densities of samples within a frame
    end;

    ps_noise(1,1:frame)= (sum(ps_noise(1:k,1:frame))/5);          % average power spectral densities of noises within a frame


head = 0; 
%%%%% START OF THE NOISE ELIMINATION THROUGH SPECTRAL SUBTRACTION BASED ON THE THRESHOLD SET %%%%%%

   for k = 1 :( length(signal)/shift-1),
        for m = 1 : frame,
          abc1(m) = signal(head+m);          
        end;
        
        head = head +shift;
        frame_temp(k,1:frame) = abs(fft(abc1));            % FFT OF THE SIGNAL + NOISE FRAME BY FRAME
        frame_angle(k,1:frame) = angle(fft(abc1));         % ANGLE OF FFT OF THE SIGNAL + NOISE FRAME BY FRAME
        pmix_signal(k,1:frame) = (frame_temp(k,1:frame).*conj(frame_temp(k,1:frame)))./frame; % power of mixed signal
        ps_temp(k,1:frame)=pmix_signal(k,1:frame);
                  
%%%%%%%%%%%      end detection    %%%%%%%%%%%%%%%

       c_n=0.995;    %%% rate of renewing noise power spectrum
       c_s=0.999;    %%% rate of renewing signal power spectrum
       c_beta=0.1;  
       counter=0;    %%% the number of consecutive noise frames till current frame

     if k==1                                               % first frame
            ps_signal(k,1:frame)=pmix_signal(k,1:frame);
            counter=1;
     else  
       yeta(1,k)=sum(    pmix_signal(k,1:frame)/(abs(pmix_signal(k,1:frame)-ps_noise(k-1,1:frame))) );
       if(yeta(1,k)>1.1)                     %if yeta is larger than threshold,current frame is signed as noise frame
           counter=counter+1;
           if counter==3                     %if three consecutive frames are signed as noise frame,renew the estimation of noise energy
               ps_noise(k,1:frame)=c_n*ps_noise(1,1:frame)+(1-c_n)*pmix_signal(k,1:frame);  
               counter=2;
           else ps_noise(k,1:frame)=ps_noise(k-1,1:frame);
           end
       else 
           ps_noise(k,1:frame)=ps_noise(k-1,1:frame);     
           counter=0;             
       end;
       ps_signal(k,1:frame)=c_s*ps_signal(k-1,1:frame)+(1-c_s)*pmix_signal(k,1:frame)-c_beta*ps_noise(k,1:frame);  %%% estimation of power spectrum of signal
     end
       ps_signal(k,1:frame)=abs(ps_signal(k,1:frame));
        
     
%%%%%%%%%   calculate masking value   %%%%%%%%%

	T=zeros(1,256);
    b=zeros(1,22);c=zeros(1,22);o=zeros(1,22);
    sf=zeros(22,22);

 %%%  calculate power spectrum of every bark band    
    
	for i1=1:3,
	    b(1)=b(1)+ps_signal(k,i1);        
    end;
	for i1=4:6,
		b(2)=b(2)+ps_signal(k,i1);
    end;
	for i1=7:10,
		b(3)=b(3)+ps_signal(k,i1);
    end;
	for i1=11:13,
		b(4)=b(4)+ps_signal(k,i1);
    end;
	for i1=14:16,
		b(5)=b(5)+ps_signal(k,i1);
    end;
	for i1=17:20,
		b(6)=b(6)+ps_signal(k,i1);
    end;
	for i1=21:25,
		b(7)=b(7)+ps_signal(k,i1);
    end;
	for i1=26:29,
		b(8)=b(8)+ps_signal(k,i1);
    end;
	for i1=30:35,
		b(9)=b(9)+ps_signal(k,i1);
    end;
	for i1=36:41,
		b(10)=b(10)+ps_signal(k,i1);
    end;
	for i1=42:47,
		b(11)=b(11)+ps_signal(k,i1);
    end;
	for i1=48:55,
		b(12)=b(12)+ps_signal(k,i1);
    end;
	for i1=56:64,
		b(13)=b(13)+ps_signal(k,i1);
    end;
	for i1=65:74,
		b(14)=b(14)+ps_signal(k,i1);
    end;
	for i1=75:86,
		b(15)=b(15)+ps_signal(k,i1);
    end;
	for i1=87:101,
		b(16)=b(16)+ps_signal(k,i1);
    end;
	for i1=102:118,
		b(17)=b(17)+ps_signal(k,i1);
    end;
	for i1=119:141,
		b(18)=b(18)+ps_signal(k,i1);
    end;
	for i1=142:170,
		b(19)=b(19)+ps_signal(k,i1);
    end;
	for i1=171:205,
		b(20)=b(20)+ps_signal(k,i1);
    end;
	for i1=206:246,
		b(21)=b(21)+ps_signal(k,i1);
    end;    
    for i1=247:256,
		b(22)=b(22)+ps_signal(k,i1);
    end;
	
%%%  calculate the spread function
    
    for i1=1:22,
    sf(i1)=15.81+7.5*(i1+0.474)-17.5*sqrt(1+(i1+0.474)*(i1+0.474));
    end;

%%%  apply the spread function to the critical band spectrum

%	 for j1=1:22,
%		c(j1)=0;
%		for i1=1:22,
%			c(j1)=c(j1)+b(i1)*sf(i1,j1);                         
%        end;
%    end;                                % the function of this section is same as the following function(conv2)
    
    cc_temp=conv2(b,sf);                 % convolution 
    for i1=1:22		
		for j1=1:22
			c(i1)=c(i1)+cc_temp(i1,j1);
        end;
    end;

%%% calculate eh spread masking threshold

	temp_value(k)=0.0;
	for i1=1:22,
		temp_value(k)=temp_value(k)+b(i1);
    end;
	ua=temp_value(k)/256.0;               % calculate the arithmetic average

	temp_value(k)=0;
	for i1=1:256, 
		temp_value(k)=temp_value(k)+log10(ps_signal(k,i1));
    end;
	temp_value(k)=temp_value(k)/256.0;
	uj=power(10,temp_value(k));           % calculate the geomitry average
    
	 sfm=-10*log10(uj/ua);                % spectrual flatness measurement

	u=min(sfm/(-60),1);                   % tonality of signal

  for i1=1:22,
	  O(i1)=u*(14.5+i1)+(1-u)*5.5;            % offset
      T(i1)=power(10,log10(c(i1))-O(i1)/10);  % auditory masking threshold
	  c(i1)=T(i1);%c[i]暂存T[i]
  end;
    for i1=1:3,
	    T(i1)=c(1);
    end;
	for i1=4:6,
		T(i1)=c(2);
    end;
	for i1=7:10,
		T(i1)=c(3);
    end;
	for i1=11:13,
		T(i1)=c(4);
    end;
	for i1=14:16,
		T(i1)=c(5);
    end;
	for i1=17:20,
		T(i1)=c(6);
    end;
	for i1=21:25,
		T(i1)=c(7);
    end;
	for i1=26:29,
		T(i1)=c(8);
    end;
	for i1=30:35,
		T(i1)=c(9);
    end;
	for i1=36:41,
		T(i1)=c(10);
    end;
	for i1=42:47,
		T(i1)=c(11);
    end;
	for i1=48:55,
		T(i1)=c(12);
    end;
	for i1=56:64,
		T(i1)=c(13);
    end;
	for i1=65:74,
		T(i1)=c(14);
    end;
	for i1=75:86,
		T(i1)=c(15);
    end;
	for i1=87:101,
		T(i1)=c(16);
    end;
	for i1=102:118,
		T(i1)=c(17);
    end;
	for i1=119:141,
		T(i1)=c(18);
    end;
	for i1=142:170,
		T(i1)=c(19);
    end;
	for i1=171:205,
		T(i1)=c(20);
    end;
	for i1=206:246
		T(i1)=c(21);
    end;
	for i1=247:256,
		T(i1)=c(22);
    end;
	
		
	%////计算绝对听阈////
	mm=0.0;
	for i1=1:256,
		f(i1)=mm;
		mm=mm+8/256;
    end;
	
	f(1)=f(2);
	for i1=1:256,
		 %f(i1)=(3.64*power(f(i1),-0.8)-6.5*exp(-0.6*power((f(i1)-3.3),2))+0.001*power(f(i1),4));
         f(i1)=3.64*(f(i1).^(-0.8))- 6.5*exp(-0.6*((f(i1)-3.3).^2))+0.001*(f(i1).^4);
     end;
	
	for i1=1:256,
		T(i1)=max(T(i1),f(i1));
    end;
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       original  algorithm            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%         tmax=0;
%         tmin=0;
% 	for i1=1:256,
% 		if(T(i1)>tmax)
% 			tmax=T(i1);
%         end;
% 		if(T(i1)<tmin)
% 			tmin=T(i1);
%         end;
%     end;
         			
        %frame_ps(1,k) = (sum(ps_signal(k,1:frame)));% Sum of the power spectral densities of samples within a frame
        %ps_final(1,k) = frame_ps(1,k) - threshold;% Elimination of noise from the corrupted signal

        %h(1,k)=abs(ps_final(1,k)/frame_ps(1,k));
        %aa=0.6;bb=2;
     
      
        
%         for k1=1:256,
% 			alfa(k1)=(tmax*6-T(k1)*6+1*T(k1)-1*tmin)/(tmax-tmin);
% 			beita(k1)=(tmax*0.02-T(k1)*0.02+0*T(k1)-0*tmin)/(tmax-tmin);      
%             temppow=abs(ps_noise(k,k1))/abs(ps_temp(k,k1));
%             
% 			if(power(temppow,2)<(1.0/(alfa(k1)+beita(k1))))
% 				%if(1-alfa[k]*pow(temppow,2)>0)
% 				frame1( k,k1)=power((1-alfa(k1)*power(temppow,2)),0.5)*ps_temp(k,k1);
%             else
% 				frame1(k,k1)=power((beita(k1)*power(temppow,2)),0.5)*ps_temp(k,k1);
%             end;
%         end;
%  end;       
%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       new  algorithm        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% a1(k,1:frame)=power((ps_signal(k,1:frame)+ps_noise(k,1:frame)),2)./(power((sqrt(ps_signal(k,1:frame))+sqrt(T(1:frame))),2))-(ps_signal(k,1:frame)+ps_noise(k,1:frame));
% a2(k,1:frame)=power((ps_signal(k,1:frame)+ps_noise(k,1:frame)),2)./(power((sqrt(ps_signal(k,1:frame))-sqrt(T(1:frame))),2))-(ps_signal(k,1:frame)+ps_noise(k,1:frame));

a1(k,1:frame)=power((ps_signal(k,1:frame)+ps_noise(k,1:frame)),2)./(ps_signal(k,1:frame))-(ps_signal(k,1:frame)+ps_noise(k,1:frame));
a2(k,1:frame)=power((ps_signal(k,1:frame)+ps_noise(k,1:frame)),2)./(T(1:frame))-(ps_signal(k,1:frame)+ps_noise(k,1:frame));
a2=abs(a2);
% if a1(k,1:frame)>a2(k,1:frame)
%      a(k,1:frame)=a1(k,1:frame);
% else a(k,1:frame)=a2(k,1:frame);
% end

landa=1.5;      %%%  make up for estimate error of a_l & a_h  
c_a=0.7;            %%%  coefficient of a_l & a_h
a(k,1:frame)=(c_a*a1(k,1:frame)+(1-c_a)*a2(k,1:frame))*landa; 
%a(k,1:frame)=(ps_noise(k,1:frame)+T(1:frame)).*(ps_noise(k,1:frame)/T(1:frame));

e_ps_signal(k,1:frame)=power(pmix_signal(k,1:frame),2)./(pmix_signal(k,1:frame)+a(k,1:frame));


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%         Weiner Filter      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%    hh = 0; 
%    for k = 1 : 5,   
%            ps_noise(k,1:frame) = (frame1(k,1:frame).*conj(frame1(k,1:frame)))/frame;
%    end;
%    %语音前五真早声能量
%    ps_noise2(1,1:frame)= (sum(ps_noise(1:5,1:frame))/5);
%   % frame1_initial(1:frame)=sum(frame1(1:5,1:frame))/5;
%    
%    for k = 1 : (length(signal)/shift-3),
%       ps_noise(k,1:frame)=ps_noise2(1,1:frame);
%       ps_signal(k,1:frame) = (frame1(k,1:frame).*conj(frame1(k,1:frame)))./frame; 
%       frame_ps(1,k) = (sum(ps_signal(k,1:frame)));%一阵内信号能量之和
%       frame_pn(1,k)=sum(ps_noise(k,1:frame));   
%       ps_final(1,k) = frame_ps(1,k)-0* frame_pn(1,k);      
%        
%       %ps_final(k,1:frame) = ps_signal(k,1:frame)-ps_noise(k,1:frame);
%       %if ps_final(k,1:frame)<0
%       %    ps_final(k,1:frame)=zeros(1,frame);
%       %end
%       
%       %frame1(k,1:frame)=sqrt(ps_final(k,1:frame));
%       
%       if ps_final(1,k)<0
%           ps_final(1,k)=0;
%       end 
%       
%        aa=1;bb=0.5;
%        h(1,k)=power(ps_final(1,k)/(ps_final(1,k)+aa*frame_pn(1,k)),bb);
%        frame1(k,1:frame) = h(1,k).*(frame1(k,1:frame));%为那滤波
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

       frame1(k,1:frame) = sqrt(e_ps_signal(k,1:frame)).*(exp(i*frame_angle(k,1:frame)));
       frame2(k,1:frame)=ifft(frame1(k,1:frame));
        if k==1 
             signal(1,1:shift)=frame2(k,1:shift);
             %        else if k==2
        else   signal(1,((k-1)*shift+1):(k*shift))=(frame2(k,1:shift)+frame2(k-1,(shift+1):(shift*2)))/2;
%         else if  k==3
%               signal(1,(shift*2+1):(3*shift))=(frame2(k,1:shift)+frame2(k-1,(shift+1):(shift*2))+frame2(k-2,(shift*2+1):(shift*3)))/3;
%               %else if k==length(signal)/shift-3
%             %signal(1,(k*shift+1):((k+1)*shift))=frame2(k,(3*shift+1):frame);
%         else signal(1,(((k-1)*shift+1):(k*shift)))=(frame2(k,1:shift)+frame2(k-1,(shift+1):(shift*2))+frame2(k-2,(shift*2+1):(shift*3))+frame2(k-3,(shift*3+1):frame))/4;
%             %end;
%             end;
%            end;
         end;
       
       %signal(1,(((k-1)*frame)+1):(k*frame)) = frame2(k,1:frame); % Retriving back the signal(after spectral subtraction)
    end     
 

 signal((length(y)-1000):(length(y)))=[];   %give up 4 frames in the end
  signal(1:1280)=[];
% y1((length(y1)-1000):(length(y1)))=[];
% y1(1:1280)=[];
%figure(3);
%plot(1:length(frame_ps),frame_ps,1:length(ps_signal),ps_signal);
figure(4);
signal=signal';
signal=signal/max(abs(signal));%归一化
plot(1:length(signal),signal);

%overall_snr = 10*log10(sum(abs(y1).^2)/sum((abs(y1-signal)).^2))
%overall_snr2 = 10*log10(sum(abs(y1).^2)/sum((abs(y1-signal*1.2)).^2))

wavwrite(signal,11025,16,'F:\noise enhancing\noise\denoise\stc-launch[1]_denoise.wav');

% for i=33:length(signal)
%     signal3(i)=signal(i)+signal(i-32);
% end
% 
% wavwrite(signal3,8000,8,'F:\noise enhancing\wav\16bitmymasking21(5db).wav');

% for i=33:length(signal)
%     signal4(i)=signal(i)+signal(i-16);
% end
% wavwrite(signal4,8000,8,'F:\noise enhancing\wav\mymasking21(-5db).wav');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     以下画语谱图     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%map=(log10(1:0.1:10))';
%map=[map map map ];
%subplot(2,2,1)
%spgrambw( noise,8000);title('noise Specgram');colormap(1-map);
%subplot(2,2,2)
%spgrambw(y1,8000);title('sig Specgram');colormap(1-map);
%subplot(2,2,3)
%spgrambw(y,8000);title('mixsig Specgram');colormap(1-map);
%subplot(2,2,4)
%spgrambw(signal,8000);title('Proposed Algorithm Specgram');colormap(1-map);

%spgrambw(sig,8000);title('pure Specgram');colormap(1-map);
%[overall_snr2,seg_nr2]=snr(y1,signal)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -