⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cp3m03_ed.m

📁 matlab仿真通过的降噪程序
💻 M
字号:
clear all;
% [y1,fs,bits]=wavread('F:\noise enhancing\wav\5.wav');
% %[y1,fs,bits]=wavread('F:\语音降噪\wav\female.wav');
% y1=y1/max(abs(y1));%语音信号归一化
% wavwrite(y1,8000,8,'F:\noise enhancing\voise\5.wav');
% %wavwrite(y1,8000,8,'F:\语音降噪\wav\sunshine2.wav');
% figure(1);
% plot(y1);
% 
% [noise,fs1,bits1]=wavread('F:\noise enhancing\wav\5_noise.wav');
% %[noise,fs1,bits1]=wavread('F:\语音降噪\wav\pc_noise.wav');
% y=mixsig(y1,noise,5);% 混合
%  %[y,fs1,bits1]=wavread('F:\noise enhancing\wav\radio_baby.wav');
% 
% y=y/max(abs(y));%归一化
% wavwrite(y,8000,8,'F:\noise enhancing\wav\mymasking_s&w(5).wav');
% figure(2);
% plot(y);

[y,fs,bits]=wavread('F:\noise enhancing\noise\denoise\重点4.wav');
frame = 256;    % Defining frame size
shift=64;
win=hamming(256);

for j1 = 1:length(y),
 signal(j1) = y(j1);
end;

ps_noise=zeros(length(signal)/shift,frame);
frame_temp = zeros(length(signal)/frame,frame);

hh = 0; 
   for k = 1 : 5,
       for l = 1 : frame,
          b(l) = signal(hh+l);
      end;
        hh = hh + frame;
        frame_temp(k,1:frame) = abs(fft(b));                      %fft for the first 50 frames
        ps_noise(k,1:frame) = (frame_temp(k,1:frame).*conj(frame_temp(k,1:frame)))/frame;
        %ps_noise(1,1:frame)= (sum(ps_noise(1:k,l))/20);          % Sum of the power spectral densities of samples within a frame

    end;%语音前五真早声能量
    %ps_noise=zeros(length(signal)/frame,frame);
    %ps_noise(1,1:frame)= sum(A)/20;            % setting the threshold for the noise(frame noise)
    ps_noise(1,1:frame)= (sum(ps_noise(1:k,1:frame))/5);
    frame_temp_initial(1:frame)=sum(frame_temp(k,1:frame))/k;


%
head = 0; 
mm=1;
nn=1;
% START OF THE NOISE ELIMINATION THROUGH SPECTRAL SUBTRACTION BASED ON THE THRESHOLD SET

   for k = 1 :( length(signal)/shift-3),
        for m = 1 : frame,
          abc1(m) = signal(head+m);
          
        end;
        abc1=abc1.*win';
        
        head = head +shift;
        frame_temp(k,1:frame) = abs(fft(abc1));% FFT OF THE SIGNAL + NOISE FRAME BY FRAME

        frame_angle(k,1:frame) = angle(fft(abc1));% ANGLE OF FFT OF THE SIGNAL + NOISE FRAME BY FRAME

        ps_signal(k,1:frame) = (frame_temp(k,1:frame).*conj(frame_temp(k,1:frame)))./frame;
        
        %ps_temp=zeros(1,frame);
        ps_temp(k,1:frame)=ps_signal(k,1:frame);
        
         
%         if k==1
%             ps_noise(k,1:frame)=0.98*ps_noise(1,1:frame)+0.02*ps_signal(k,1:frame);
%            % ps_signal(k,1:frame)=0.98*ps_signal(k,1:frame)+0.02*ps_signal(k,1:frame);
%         else
%            ps_noise(k,1:frame)=ps_noise(k-1,1:frame);%0.99*ps_noise(1,1:frame)+0.01*ps_signal(k,1:frame);
%            ps_signal(k,1:frame)=ps_signal(k,1:frame);%0.99*ps_signal(k,1:frame)+0.01*ps_noise(1,1:frame);%+0.01*ps_signal(k-1,1:frame);
%         end
 
 
       %端点检测-倒谱系数
       if k==1
             framenoise_temp(k,1:frame)=frame_temp_initial(1:frame); 
       else framenoise_temp(k,1:frame)=framenoise_temp(k-1,1:frame);
       end
       
       dd(k)=sum(ifft(log(abs(framenoise_temp(k,1:frame)))))/frame;  %c'噪声倒谱系数
       ddi=sum(ifft(log(abs(framenoise_temp(1,1:frame)))))/frame;
       d(k)=sum(ps_signal(k,1:frame).*exp(-j*2*pi*(1:frame)*k/frame));%信号倒谱
       di=sum(ps_signal(k,1:frame));
       
       if k>1 
           dd(k)=0.8*dd(k)+0.2*d(k-1);
       end
       
       cep_disp(k)=4.3429*sqrt((di-ddi).^2+2.*((d(k)-dd(k)).^2));%倒谱距离
       
       if k>1
           cep_disp(k)=0.8*cep_disp(k)+0.2*cep_disp(k-1);
       end
       
       if cep_disp(k)<5
           if k>1
              ps_noise(k,1:frame)=0.9*ps_noise(k-1,1:frame)+0.1*ps_signal(k,1:frame); 
              framenoise_temp(k,1:frame)=0.9*framenoise_temp(k-1,1:frame)+0.1*frame_temp(k,1:frame);
           end
       end
       
        frame_ps(1,k) = (sum(ps_signal(k,1:frame)));%一阵内信号能量之和
        frame_pn(1,k)=sum(ps_noise(k,1:frame));
        ps_final(1,k) = frame_ps(1,k)- 0.8*frame_pn(1,k);
       
        aa=0.7;bb=2;
        h(1,k)=power(ps_final(1,k)/(ps_final(1,k)+aa*frame_pn(1,k)),bb);
        frame1(k,1:frame) = h(1,k).*(frame_temp(k,1:frame));%为那滤波
               
       ps_signal(k,1:frame) = (frame1(k,1:frame).*conj(frame1(k,1:frame)))./frame;
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


	T=zeros(1,256);
    b=zeros(1,22);c=zeros(1,22);o=zeros(1,22);
    sf=zeros(22,22);


		
	for i1=1:3,
	    b(1)=b(1)+ps_signal(k,i1);
    end;
	for i1=4:6,
		b(2)=b(2)+ps_signal(k,i1);
    end;
	for i1=7:10,
		b(3)=b(3)+ps_signal(k,i1);
    end;
	for i1=11:13,
		b(4)=b(4)+ps_signal(k,i1);
    end;
	for i1=14:16,
		b(5)=b(5)+ps_signal(k,i1);
    end;
	for i1=17:20,
		b(6)=b(6)+ps_signal(k,i1);
    end;
	for i1=21:25,
		b(7)=b(7)+ps_signal(k,i1);
    end;
	for i1=26:29,
		b(8)=b(8)+ps_signal(k,i1);
    end;
	for i1=30:35,
		b(9)=b(9)+ps_signal(k,i1);
    end;
	for i1=36:41,
		b(10)=b(10)+ps_signal(k,i1);
    end;
	for i1=42:47,
		b(11)=b(11)+ps_signal(k,i1);
    end;
	for i1=48:55,
		b(12)=b(12)+ps_signal(k,i1);
    end;
	for i1=56:64,
		b(13)=b(13)+ps_signal(k,i1);
    end;
	for i1=65:74,
		b(14)=b(14)+ps_signal(k,i1);
    end;
	for i1=75:86,
		b(15)=b(15)+ps_signal(k,i1);
    end;
	for i1=87:101,
		b(16)=b(16)+ps_signal(k,i1);
    end;
	for i1=102:118,
		b(17)=b(17)+ps_signal(k,i1);
    end;
	for i1=119:141,
		b(18)=b(18)+ps_signal(k,i1);
    end;
	for i1=142:170,
		b(19)=b(19)+ps_signal(k,i1);
    end;
	for i1=171:205,
		b(20)=b(20)+ps_signal(k,i1);
    end;
	for i1=206:246,
		b(21)=b(21)+ps_signal(k,i1);
    end;    
    for i1=247:256,
		b(22)=b(22)+ps_signal(k,i1);
    end;
	
	
%	for i1=1:22,
%		for j1=1:22,
%		sf(i1,j1)=15.81+7.5*((i1-j1)+0.474)-17.5*sqrt(1+((i1-j1)+0.474)*((i1-j1)+0.474));    %$ (18)
%		sf(i1,j1)=power(10,sf(i1,j1)/(20));                                                  %$ transform from dB
%        end;
%    end;
    
    for i1=1:22,
    sf(i1)=15.81+7.5*(i1+0.474)-17.5*sqrt(1+(i1+0.474)*(i1+0.474));
    end;
		
%	for j1=1:22,
%		c(j1)=0;
%		for i1=1:22,
%			c(j1)=c(j1)+b(i1)*sf(i1,j1);                          %$ (19)
%        end;
%    end;
    
    cc_temp=conv2(b,sf);
    for i1=1:22		
		for j1=1:22
			c(i1)=c(i1)+sum(cc_temp(i1,j1));
        end;
    end;
	
	temp_value=0.0;
	for i1=1:22,
		temp_value=temp_value+b(i1);
    end;
	ua=temp_value/256.0;

	temp_value=0;
	for i1=1:256, 
		temp_value=temp_value+log10(ps_signal(k,i1));
    end;
	temp_value=temp_value/256.0;
	uj=power(10,temp_value);
    
	 sfm=-10*log10(uj/ua);                %$ (20)

	u=min(sfm/(-60),1);                   %$ (21)

  for i1=1:22,
	  O(i1)=u*(14.5+i1)+(1-u)*5.5;
      T(i1)=power(10,log10(c(i1))-O(i1)/10);
	  c(i1)=T(i1);%c[i]暂存T[i]
  end;
    for i1=1:3,
	    T(i1)=c(1);
    end;
	for i1=4:6,
		T(i1)=c(2);
    end;
	for i1=7:10,
		T(i1)=c(3);
    end;
	for i1=11:13,
		T(i1)=c(4);
    end;
	for i1=14:16,
		T(i1)=c(5);
    end;
	for i1=17:20,
		T(i1)=c(6);
    end;
	for i1=21:25,
		T(i1)=c(7);
    end;
	for i1=26:29,
		T(i1)=c(8);
    end;
	for i1=30:35,
		T(i1)=c(9);
    end;
	for i1=36:41,
		T(i1)=c(10);
    end;
	for i1=42:47,
		T(i1)=c(11);
    end;
	for i1=48:55,
		T(i1)=c(12);
    end;
	for i1=56:64,
		T(i1)=c(13);
    end;
	for i1=65:74,
		T(i1)=c(14);
    end;
	for i1=75:86,
		T(i1)=c(15);
    end;
	for i1=87:101,
		T(i1)=c(16);
    end;
	for i1=102:118,
		T(i1)=c(17);
    end;
	for i1=119:141,
		T(i1)=c(18);
    end;
	for i1=142:170,
		T(i1)=c(19);
    end;
	for i1=171:205,
		T(i1)=c(20);
    end;
	for i1=206:246
		T(i1)=c(21);
    end;
	for i1=247:256,
		T(i1)=c(22);
    end;
	
		
	%////计算绝对听阈////
	mm=0.0;
	for i1=1:256,
		f(i1)=mm;
		mm=mm+8/256;
    end;
	
	f(1)=f(2);
	for i1=1:256,
		 %f(i1)=(3.64*power(f(i1),-0.8)-6.5*exp(-0.6*power((f(i1)-3.3),2))+0.001*power(f(i1),4));
         f(i1)=3.64*(f(i1).^(-0.8))- 6.5*exp(-0.6*((f(i1)-3.3).^2))+0.001*(f(i1).^4);
     end;
	
	for i1=1:256,
		T(i1)=max(T(i1),f(i1));
    end;
        tmax=0;
        tmin=0;
	for i1=1:256,
		if(T(i1)>tmax)
			tmax=T(i1);
        end;
		if(T(i1)<tmin)
			tmin=T(i1);
        end;
    end;
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

        	
       
			
		
        %frame_ps(1,k) = (sum(ps_signal(k,1:frame)));% Sum of the power spectral densities of samples within a frame
        %ps_final(1,k) = frame_ps(1,k) - threshold;% Elimination of noise from the corrupted signal

        %h(1,k)=abs(ps_final(1,k)/frame_ps(1,k));
        %aa=0.6;bb=2;
     
      
        
        for k1=1:256,
			alfa(k1)=(tmax*6-T(k1)*6+1*T(k1)-1*tmin)/(tmax-tmin);
			beita(k1)=(tmax*0.02-T(k1)*0.02+0*T(k1)-0*tmin)/(tmax-tmin);      
            temppow=abs(ps_noise(k,k1))/abs(ps_temp(k,k1));
            
			if(power(temppow,2)<(1.0/(alfa(k1)+beita(k1))))
				%if(1-alfa[k]*pow(temppow,2)>0)
				frame1( k,k1)=power((1-alfa(k1)*power(temppow,2)),0.5)*ps_temp(k,k1);
            else
				frame1(k,k1)=power((beita(k1)*power(temppow,2)),0.5)*ps_temp(k,k1);
            end;
        end;
 end;       
     
   hh = 0; 
   for k = 1 : 5,   
           ps_noise(k,1:frame) = (frame1(k,1:frame).*conj(frame1(k,1:frame)))/frame;
   end;
   %语音前五真早声能量
   ps_noise2(1,1:frame)= (sum(ps_noise(1:5,1:frame))/5);
  % frame1_initial(1:frame)=sum(frame1(1:5,1:frame))/5;
   
   for k = 1 : (length(signal)/shift-3),
      ps_noise(k,1:frame)=ps_noise2(1,1:frame);
      ps_signal(k,1:frame) = (frame1(k,1:frame).*conj(frame1(k,1:frame)))./frame; 
      frame_ps(1,k) = (sum(ps_signal(k,1:frame)));%一阵内信号能量之和
      frame_pn(1,k)=sum(ps_noise(k,1:frame));   
      ps_final(1,k) = frame_ps(1,k)- 0.6*frame_pn(1,k);      
       
      %ps_final(k,1:frame) = ps_signal(k,1:frame)-ps_noise(k,1:frame);
      %if ps_final(k,1:frame)<0
      %    ps_final(k,1:frame)=zeros(1,frame);
      %end
      
      %frame1(k,1:frame)=sqrt(ps_final(k,1:frame));
      
      if ps_final(1,k)<0
          ps_final(1,k)=0;
      end 
      
       aa=1;bb=1;
       h(1,k)=power(ps_final(1,k)/(ps_final(1,k)+aa*frame_pn(1,k)),bb);
       frame1(k,1:frame) = h(1,k).*(frame1(k,1:frame));%为那滤波
        
       frame1(k,1:frame) = frame1(k,1:frame).*(exp(i*frame_angle(k,1:frame)));
       frame2(k,1:frame)=ifft(frame1(k,1:frame));
       if k==1 
            signal(1,1:shift)=frame2(k,1:shift);
        else if k==2
              signal(1,(shift+1):(2*shift))=(frame2(k,1:shift)+frame2(k-1,(shift+1):(shift*2)))/2;
        else if  k==3
              signal(1,(shift*2+1):(3*shift))=(frame2(k,1:shift)+frame2(k-1,(shift+1):(shift*2))+frame2(k-2,(shift*2+1):(shift*3)))/3;
              %else if k==length(signal)/shift-3
            %signal(1,(k*shift+1):((k+1)*shift))=frame2(k,(3*shift+1):frame);
        else signal(1,(((k-1)*shift+1):(k*shift)))=(frame2(k,1:shift)+frame2(k-1,(shift+1):(shift*2))+frame2(k-2,(shift*2+1):(shift*3))+frame2(k-3,(shift*3+1):frame))/4;
            %end;
            end;
           end;
        end;
       
       %signal(1,(((k-1)*frame)+1):(k*frame)) = frame2(k,1:frame); % Retriving back the signal(after spectral subtraction)
    end     
   
 signal((length(y)-1000):(length(y)))=[];   %give up 4 frames in the end
%  y1((length(y1)-1000):(length(y1)))=[];
% figure(3);
% plot(1:length(frame_ps),frame_ps,1:length(ps_final),ps_final);
 figure(4);
 signal=signal';
 signal=signal/max(abs(signal));%归一化
 plot(1:length(signal),signal);
% 
% overall_snr = 10*log10(sum(abs(y1).^2)/sum((abs(y1-signal)).^2))
wavwrite(signal,11025,16,'F:\noise enhancing\wav\temp2.wav');
%以下画语谱图
%map=(log10(1:0.1:10))';
%map=[map map map ];
%subplot(2,2,1)
%spgrambw( noise,8000);title('noise Specgram');colormap(1-map);
%subplot(2,2,2)
%spgrambw(y1,8000);title('sig Specgram');colormap(1-map);
%subplot(2,2,3)
%spgrambw(y,8000);title('mixsig Specgram');colormap(1-map);
%subplot(2,2,4)
%spgrambw(signal,8000);title('Proposed Algorithm Specgram');colormap(1-map);

%spgrambw(sig,8000);title('pure Specgram');colormap(1-map);
%[overall_snr2,seg_nr2]=snr(y1,signal)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -