⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cp3m.m

📁 matlab仿真通过的降噪程序
💻 M
字号:
clear all;
[y1,fs,bits]=wavread('D:\语音降噪\voise\3.wav');
%y1=y1/max(abs(y1));%语音信号归一化
wavwrite(y1,8000,8,'D:\语音降噪\wav\4.wav');
figure(1);
plot(y1);

[noise,fs1,bits1]=wavread('D:\语音降噪\voise\3_noise.wav');
y=mixsig(y1,noise,0);% 混合
%y=y/max(abs(y));%归一化
wavwrite(y,8000,8,'D:\语音降噪\wav\mymasking_s&w.wav');%0db带噪信号
figure(2);
plot(y);

frame = 256;    % Defining frame size

shift=64;
win=hamming(256);

for j1 = 1:length(y),
 signal(j1) = y(j1);
end;

ps_noise=zeros(length(signal)/shift-3,frame);
frame_temp = zeros(length(signal)/shift-3,frame);
framenoise_temp = zeros(length(signal)/shift-3,frame);

hh = 0; 
   for k = 1 : 5,
       for l = 1 : frame,
          b(l) = signal(hh+l);
      end;
        hh = hh + frame;
        frame_temp(k,1:frame) = abs(fft(b));                      %fft for the first 50 frames
        ps_noise(k,1:frame) = (frame_temp(k,1:frame).*conj(frame_temp(k,1:frame)))/frame;
  
    end;%语音前五真早声能量
    ps_noise(1,1:frame)= (sum(ps_noise(1:k,1:frame))/5);


head = 0; 
mm=1;
nn=1;
% START OF THE NOISE ELIMINATION THROUGH SPECTRAL SUBTRACTION BASED ON THE THRESHOLD SET

   for k = 1 : length(signal)/shift-3,
        for m = 1 : frame,
          abc1(m) = signal(head+m); 
        end;
        abc1=abc1.*win';
        
        head = head +shift;
        frame_temp(k,1:frame) = abs(fft(abc1));% FFT OF THE SIGNAL + NOISE FRAME BY FRAME

        frame_angle(k,1:frame) = angle(fft(abc1));% ANGLE OF FFT OF THE SIGNAL + NOISE FRAME BY FRAME

        ps_signal(k,1:frame) = (frame_temp(k,1:frame).*conj(frame_temp(k,1:frame)))./frame;
        
        %ps_temp=zeros(1,frame);
        ps_temp(k,1:frame)=ps_signal(k,1:frame);
        
        
%         if k==1
%             ps_noise(k,1:frame)=ps_noise(1,1:frame);
%            % ps_signal(k,1:frame)=0.98*ps_signal(k,1:frame)+0.02*ps_signal(k,1:frame);
%         else
%            ps_noise(k,1:frame)=ps_noise(1,1:frame);%0.99*ps_noise(1,1:frame)+0.01*ps_signal(k,1:frame);
%            ps_signal(k,1:frame)=ps_signal(k,1:frame);%0.99*ps_signal(k,1:frame)+0.01*ps_noise(1,1:frame);%+0.01*ps_signal(k-1,1:frame);
%         end
      
        ps_noise(k,1:frame)=ps_noise(1,1:frame);
        frame_ps(1,k) = sum(ps_signal(k,1:frame));%一阵内信号能量之和
        frame_pn(1,k)=sum(ps_noise(k,1:frame));
        
        ps_final(1,k) = frame_ps(1,k)- 0.8*frame_pn(1,k);  %  0.8*
        
        aa=1;bb=1;
        h(1,k)=power(ps_final(1,k)/(ps_final(1,k)+aa*frame_pn(1,k)),bb);
        frame1(k,1:frame) = h(1,k).*(frame_temp(k,1:frame));%为那滤波
        
         ps_signal(k,1:frame) = (frame1(k,1:frame).*conj(frame1(k,1:frame)))./frame;
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


	T=zeros(1,256);
    b=zeros(1,22);c=zeros(1,22);o=zeros(1,22);
    sf=zeros(22,22);


		
	for i1=1:3,
	    b(1)=b(1)+ps_signal(k,i1);
    end;
	for i1=4:6,
		b(2)=b(2)+ps_signal(k,i1);
    end;
	for i1=7:10,
		b(3)=b(3)+ps_signal(k,i1);
    end;
	for i1=11:13,
		b(4)=b(4)+ps_signal(k,i1);
    end;
	for i1=14:16,
		b(5)=b(5)+ps_signal(k,i1);
    end;
	for i1=17:20,
		b(6)=b(6)+ps_signal(k,i1);
    end;
	for i1=21:25,
		b(7)=b(7)+ps_signal(k,i1);
    end;
	for i1=26:29,
		b(8)=b(8)+ps_signal(k,i1);
    end;
	for i1=30:35,
		b(9)=b(9)+ps_signal(k,i1);
    end;
	for i1=36:41,
		b(10)=b(10)+ps_signal(k,i1);
    end;
	for i1=42:47,
		b(11)=b(11)+ps_signal(k,i1);
    end;
	for i1=48:55,
		b(12)=b(12)+ps_signal(k,i1);
    end;
	for i1=56:64,
		b(13)=b(13)+ps_signal(k,i1);
    end;
	for i1=65:74,
		b(14)=b(14)+ps_signal(k,i1);
    end;
	for i1=75:86,
		b(15)=b(15)+ps_signal(k,i1);
    end;
	for i1=87:101,
		b(16)=b(16)+ps_signal(k,i1);
    end;
	for i1=102:118,
		b(17)=b(17)+ps_signal(k,i1);
    end;
	for i1=119:141,
		b(18)=b(18)+ps_signal(k,i1);
    end;
	for i1=142:170,
		b(19)=b(19)+ps_signal(k,i1);
    end;
	for i1=171:205,
		b(20)=b(20)+ps_signal(k,i1);
    end;
	for i1=206:246,
		b(21)=b(21)+ps_signal(k,i1);
    end;    
    for i1=247:256,
		b(22)=b(22)+ps_signal(k,i1);
    end;
	
	
%	for i1=1:22,
%		for j1=1:22,
%		sf(i1,j1)=15.81+7.5*((i1-j1)+0.474)-17.5*sqrt(1+((i1-j1)+0.474)*((i1-j1)+0.474));    %$ (18)
%		sf(i1,j1)=power(10,sf(i1,j1)/(20));                                                  %$ transform from dB
%        end;
%    end;
    
    for i1=1:22,
    sf(i1)=15.81+7.5*(i1+0.474)-17.5*sqrt(1+(i1+0.474)*(i1+0.474));
    end;
		
%	for j1=1:22,
%		c(j1)=0;
%		for i1=1:22,
%			c(j1)=c(j1)+b(i1)*sf(i1,j1);                          %$ (19)
%        end;
%    end;
    
    cc_temp=conv2(b,sf);
    for i1=1:22		
		for j1=1:22
			c(i1)=sum(cc_temp(i1,j1));
        end;
    end;
	
	temp_value=0.0;
	for i1=1:22,
		temp_value=temp_value+b(i1);
    end;
	ua=temp_value/256.0;

	temp_value=0;
	for i1=1:256, 
		temp_value=temp_value+log10(ps_signal(k,i1));
    end;
	temp_value=temp_value/256.0;
	uj=power(10,temp_value);
    
	 sfm=-10*log10(uj/ua);                %$ (20)

	u=min(sfm/(-60),1);                   %$ (21)

  for i1=1:22,
	  O(i1)=u*(14.5+i)+(1-u)*5.5;
      T(i1)=power(10,log10(c(i1))-O(i1)/10);
	  c(i1)=T(i1);%c[i]暂存T[i]
  end;
    for i1=1:3,
	    T(i1)=c(1);
    end;
	for i1=4:6,
		T(i1)=c(2);
    end;
	for i1=7:10,
		T(i1)=c(3);
    end;
	for i1=11:13,
		T(i1)=c(4);
    end;
	for i1=14:16,
		T(i1)=c(5);
    end;
	for i1=17:20,
		T(i1)=c(6);
    end;
	for i1=21:25,
		T(i1)=c(7);
    end;
	for i1=26:29,
		T(i1)=c(8);
    end;
	for i1=30:35,
		T(i1)=c(9);
    end;
	for i1=36:41,
		T(i1)=c(10);
    end;
	for i1=42:47,
		T(i1)=c(11);
    end;
	for i1=48:55,
		T(i1)=c(12);
    end;
	for i1=56:64,
		T(i1)=c(13);
    end;
	for i1=65:74,
		T(i1)=c(14);
    end;
	for i1=75:86,
		T(i1)=c(15);
    end;
	for i1=87:1010,
		T(i1)=c(16);
    end;
	for i1=102:118,
		T(i1)=c(17);
    end;
	for i1=119:141,
		T(i1)=c(18);
    end;
	for i1=142:170,
		T(i1)=c(19);
    end;
	for i1=171:205,
		T(i1)=c(20);
    end;
	for i1=206:246
		T(i1)=c(21);
    end;
	for i1=247:256,
		T(i1)=c(22);
    end;
	
		
	%////计算绝对听阈////
	mm=0.0;
	for i1=1:256,
		f(i1)=mm;
		mm=mm+8/256;
    end;
	
	f(1)=f(2);
	for i1=1:256,
		 %f(i1)=(3.64*power(f(i1),-0.8)-6.5*exp(-0.6*power((f(i1)-3.3),2))+0.001*power(f(i1),4));
         f(i1)=3.64*(f(i1).^(-0.8))- 6.5*exp(-0.6*((f(i1)-3.3).^2))+0.001*(f(i1).^4);
     end;
	
	for i1=1:256,
		T(i1)=max(T(i1),f(i1));
    end;
        tmax=0;
        tmin=0;
	for i1=1:256,
		if(T(i1)>tmax)
			tmax=T(i1);
        end;
		if(T(i1)<tmin)
			tmin=T(i1);
        end;
    end;
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

        	
       
			
		
        %frame_ps(1,k) = (sum(ps_signal(k,1:frame)));% Sum of the power spectral densities of samples within a frame
        %ps_final(1,k) = frame_ps(1,k) - threshold;% Elimination of noise from the corrupted signal

        %h(1,k)=abs(ps_final(1,k)/frame_ps(1,k));
        %aa=0.6;bb=2;
     
      
        
        for k1=1:256,

			alfa(k1)=(tmax*6-T(k1)*6+1*T(k1)-1*tmin)/(tmax-tmin);
			beita(k1)=(tmax*0.02-T(k1)*0.02+0*T(k1)-0*tmin)/(tmax-tmin);

            
            temppow=abs(ps_noise(k,k1))/abs(ps_temp(k,k1));
			if(power(temppow,2)<(1.0/(alfa(k1)+beita(k1))))
				%if(1-alfa[k]*pow(temppow,2)>0)
				frame1( k,k1)=power((1-alfa(k1)*power(temppow,2)),0.5)*ps_temp(k,k1);
            else
				frame1(k,k1)=power((beita(k1)*power(temppow,2)),0.5)*ps_temp(k,k1);
            end;
        end;
 end;       
 
 
     
   hh = 0; 
   for k = 1 : 5,   
           ps_noise(k,1:frame) = (frame1(k,1:frame).*conj(frame1(k,1:frame)))/frame;
   end;
   %语音前五真早声能量
   ps_noise2(1,1:frame)= (sum(ps_noise(1:5,1:frame))/5);
  % frame1_initial(1:frame)=sum(frame1(1:5,1:frame))/5;
   
   for k = 1 : length(signal)/shift-3,
      ps_noise(k,1:frame)=ps_noise2(1,1:frame);
      ps_signal(k,1:frame) = (frame1(k,1:frame).*conj(frame1(k,1:frame)))./frame; 
      frame_ps(1,k) = (sum(ps_signal(k,1:frame)));%一阵内信号能量之和
      frame_pn(1,k)=sum(ps_noise(k,1:frame));   
      ps_final(1,k) = frame_ps(1,k)- frame_pn(1,k);      
       
      if ps_final(1,k)<0
          ps_final(1,k)=0;
      end 
      
       aa=2;bb=5;
        h(1,k)=power(ps_final(1,k)/(ps_final(1,k)+aa*frame_pn(1,k)),bb);
  %     frame1(k,1:frame) = h(1,k).*(frame1(k,1:frame));%为那滤波
       
       frame2(k,1:frame)=ifft(frame1(k,1:frame));
        %signal(1,(((k-1)*frame)+1):(k*frame)) = frame2(k,1:frame); % Retriving back the signal(after spectral subtraction)
        if k==1 
            signal(1,1:shift)=frame2(k,1:shift);
        else if k==2
              signal(1,(shift+1):(2*shift))=(frame2(k,1:shift)+frame2(k-1,(shift+1):(shift*2)))/2;
        else if  k==3
              signal(1,(shift*2+1):(3*shift))=(frame2(k,1:shift)+frame2(k-1,(shift+1):(shift*2))+frame2(k-2,(shift*2+1):(shift*3)))/3;
              %else if k==length(signal)/shift-3
            %signal(1,(k*shift+1):((k+1)*shift))=frame2(k,(3*shift+1):frame);
        else signal(1,(((k-1)*shift+1):(k*shift)))=(frame2(k,1:shift)+frame2(k-1,(shift+1):(shift*2))+frame2(k-2,(shift*2+1):(shift*3))+frame2(k-3,(shift*3+1):frame))/4;
            %end;
            end;
           end;
        end;
        
      % frame1(k,1:frame) = frame1(k,1:frame).*(exp(i*frame_angle(k,1:frame)));
      %  frame2(k,1:frame)=ifft(frame1(k,1:frame));
      %  signal(1,(((k-1)*frame)+1):(k*frame)) = frame2(k,1:frame); % Retriving back the signal(after spectral subtraction)
    end     
   
 signal((length(y)-1000):(length(y)))=[];   %give up 4 frames in the end
 y1((length(y1)-1000):(length(y1)))=[];
figure(3);
plot(1:length(frame_ps),frame_ps,1:length(ps_final),ps_final);
figure(4);
signal=signal';
overall_snr = 10*log10(sum(abs(y1).^2)/sum((abs(y1-signal)).^2));
signal=signal/max(abs(signal));%归一化
plot(1:length(signal),signal);
%以下画语谱图
%map=(log10(1:0.1:10))';
%map=[map map map ];
%subplot(2,2,1)
%spgrambw( noise,8000);title('noise Specgram');colormap(1-map);
%subplot(2,2,2)
%spgrambw(y1,8000);title('sig Specgram');colormap(1-map);
%subplot(2,2,3)
%spgrambw(y,8000);title('mixsig Specgram');colormap(1-map);
%subplot(2,2,4)
%spgrambw(signal,8000);title('Proposed Algorithm Specgram');colormap(1-map);

%spgrambw(sig,8000);title('pure Specgram');colormap(1-map);
%[overall_snr2,seg_nr2]=snr(y1,signal)
%overall_snr = 10*log10(sum(abs(y1).^2)/sum((abs(y1-signal)).^2))
wavwrite(signal,8000,8,'D:\语音降噪\wav\mymasking21(0db).wav');

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -