⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mfrc50~1.c

📁 该程序是将读到的IC卡卡号转换成韦根26代码进行输出。读卡芯片采用的是飞利浦公司的Mf500,单片机采用的是atmel公司的atmeg8
💻 C
📖 第 1 页 / 共 2 页
字号:
#include <string.h>
#include <stdio.h>
#include <e:\avr\avr_soft\MfRc500.h>
#include <e:\avr\avr_soft\main.h>
#include <iom8v.h>
unsigned char MLastSelectedSnr[5];
#define TCLFSDSNDMAX   8   ///< max. frame size send
#define TCLFSDRECMAX   8   ///< max. frame size rcv
#define TCLDSMAX       3   ///< max. baudrate divider PICC --> PCD
#define TCLDRMAX       3   ///< max. baudrate divider PCD --> PICC
#define TCLDSDFLT      0   ///< default baudrate divider PICC --> PCD
#define TCLDRDFLT      0   ///< default baudrate divider PCD --> PICC
unsigned char *MSndBuffer;
unsigned char *MRcvBuffer;
MfCmdInfo MInfo;

MfCmdInfo     *MpIsrInfo = 0; 
unsigned char *MpIsrOut = 0; 
unsigned char *MpIsrIn = 0;   
unsigned char CountDown;
unsigned char T2IR;

unsigned char RicRxTxBuffer[256];
unsigned char MFIFOLength = DEF_FIFO_LENGTH;
char Mf500PiccAuthState(unsigned char auth_mode,// PICC_AUTHENT1A, PICC_AUTHENT1B
                       unsigned char *snr,    // 4 byte serial number
                       unsigned char sector); // 0 <= sector <= 15
unsigned char mc500_time=0;
char Mf500PcdConfig(void)
{
   unsigned char i;
   int status = MI_RESETERR;
   unsigned short RstLoopCnt = 0;
   unsigned short CmdWaitCnt = 0;
   MSndBuffer = RicRxTxBuffer;  // initialise send buffer 
   MRcvBuffer = RicRxTxBuffer;  // initialise receive buffer
   status = PcdReset();
   if (status == MI_OK)
   {
     WriteRC(RegClockQControl,0x0);
	 for(i=0;i<105;i++);
     ClearBitMask(RegClockQControl,0x40); // clear bit ClkQCalib for 
     WriteRC(RegBitPhase,0xAD);      
     WriteRC(RegRxThreshold,0xFF);   
     WriteRC(RegRxControl2,00);
     WriteRC(RegFIFOLevel,0x1A); // initialize to 26d 
     WriteRC(RegTimerControl,0x02);  // TStopRxEnd=0,TStopRxBeg=0,
     WriteRC(RegIRqPinConfig,0x3); // interrupt active low enable
     PcdRfReset(1);            // Rf - reset and enable output driver   
   }
   return status;
}
char Mf500PiccRequest(unsigned char req_code, // request code ALL = 0x52 
                                           // or IDLE = 0x26 
                   unsigned char *atq)     // answer to request
{
      int status = MI_OK;
   	  PcdSetTmo(106);
      WriteRC(RegChannelRedundancy,0x03); // RxCRC and TxCRC disable, parity enable
      ClearBitMask(RegControl,0x08);      // disable crypto 1 unit   
      WriteRC(RegBitFraming,0x07);        // set TxLastBits to 7 
      ResetInfo(MInfo);   
      MSndBuffer[0] = req_code;
      MInfo.nBytesToSend   = 1;   
      status = PcdSingleResponseCmd(0x1e,MSndBuffer,MRcvBuffer,&MInfo);
      if (status)      // error occured
      {
      *atq = 0;
      } 
      else 
      {
         if (MInfo.nBitsReceived != 16) // 2 bytes expected
         {
            status = MI_BITCOUNTERR;
         } 
         else 
         {
            status = MI_OK;
            memcpy(atq,MRcvBuffer,2);
         }
      }
   return status; 
}

char Mf500PiccAnticoll (unsigned char bcnt,
                     unsigned char *snr)
{
   int  status = MI_OK;
   char  snr_in[4];         // copy of the input parameter snr
   char  nbytes = 0;        // how many bytes received
   char  nbits = 0;         // how many bits received
   char  complete = 0;      // complete snr recived
   char  i        = 0;
   char  byteOffset = 0;
   unsigned char snr_crc;   // check byte calculation
   unsigned char snr_check;
   unsigned char dummyShift1;       // dummy byte for snr shift
   unsigned char dummyShift2;       // dummy byte for snr shift   
   if ((status = Mf500PcdSetDefaultAttrib()) == MI_OK)
   {
      PcdSetTmo(106);
      memcpy(snr_in,snr,4);   
      WriteRC(RegDecoderControl,0x28); // ZeroAfterColl aktivieren   
      ClearBitMask(RegControl,0x08);    // disable crypto 1 unit
      complete=0;
      while (!complete && (status == MI_OK) )
      {
         ResetInfo(MInfo);
         WriteRC(RegChannelRedundancy,0x03); // RxCRC and TxCRC disable, parity enable
         nbits = bcnt % 8;   // remaining number of bits
         if (nbits)
         {
            WriteRC(RegBitFraming,nbits << 4 | nbits); // TxLastBits/RxAlign auf nb_bi
            nbytes = bcnt / 8 + 1;   
            if (nbits == 7 )
            {
               MInfo.cmd = PICC_ANTICOLL1;   // pass command flag to ISR        
               WriteRC(RegBitFraming,nbits); // reset RxAlign to zero
            }
         } 
         else
         {
            nbytes = bcnt / 8;
         }
         MSndBuffer[0] = 0x93;
         MSndBuffer[1] = 0x20 + ((bcnt/8) << 4) + nbits; //number of bytes send
         for (i = 0; i < nbytes; i++)  // Sende Buffer beschreiben
         {
            MSndBuffer[i + 2] = snr_in[i];
         }
         MInfo.nBytesToSend = 2 + nbytes;    
        status = PcdSingleResponseCmd(0x1e,
                            MSndBuffer,
                            MRcvBuffer,
                            &MInfo);
       if (nbits == 7)
         {
            dummyShift1 = 0x00;
            for (i = 0; i < MInfo.nBytesReceived; i++)
            {
                dummyShift2 = MRcvBuffer[i];
                MRcvBuffer[i] = (dummyShift1 >> (i+1)) | (MRcvBuffer[i] << (7-i));
                dummyShift1 = dummyShift2;
            }
            MInfo.nBitsReceived -= MInfo.nBytesReceived; // subtract received parity bits
            if ( MInfo.collPos ) MInfo.collPos += 7 - (MInfo.collPos + 6) / 9;
         }
         if ( status == MI_OK || status == MI_COLLERR)    // no other occured
         {
             if ( MInfo.nBitsReceived != (40 - bcnt) ) // not 5 bytes answered
            {
               status = MI_BITCOUNTERR;
            } 
            else 
            {
               byteOffset = 0;
               if ( nbits != 0 )           // last byte was not complete
               {
                  snr_in[nbytes - 1] = snr_in[nbytes - 1] | MRcvBuffer[0];
                  byteOffset = 1;
               }
               for ( i =0; i < (4 - nbytes); i++)     
               {
                  snr_in[nbytes + i] = MRcvBuffer[i + byteOffset];
               }
               if (status != MI_COLLERR ) // no error and no collision
               {
                  snr_crc = snr_in[0] ^ snr_in[1] ^ snr_in[2] ^ snr_in[3];
                  snr_check = MRcvBuffer[MInfo.nBytesReceived - 1];
                  if (snr_crc != snr_check)
                  {
                     status = MI_SERNRERR;
                  } 
                  else   
                  {
                     complete = 1;
                  }
               }
               else                   // collision occured
               {
                  bcnt = bcnt + MInfo.collPos - nbits;
                  status = MI_OK;
               }
            }
        }
      }
   }
   if (status == MI_OK)
   {
       memcpy(snr,snr_in,4);
   }
   else
   {
		;
   }
    ClearBitMask(RegDecoderControl,0x20); // ZeroAfterColl disable
    return status;  
}
char Mf500PcdSetDefaultAttrib(void)
{
   int   status = MI_OK;
   return status;
}

char PcdReset(void)
{
   long int i;
   int status = MI_OK;
   CLEAR_RC500RST();  // clear reset pin
   for(i=0;i<50;i++);    
   SET_RC500RST();   // reset RC500
   for(i=0;i<50;i++);
   CLEAR_RC500RST(); 
 	 
   start_timeout(210);
    while (((ReadRawRC(RegCommand) & 0x3F) != 0x3F) && !T2IR);
    while ((ReadRawRC(RegCommand) & 0x3F) && !T2IR);
	stop_timeout();
   if (T2IR)
   {
      status = MI_RESETERR; // respose of reader IC is not correct
      T2IR   = 0;
   }
  if (status == MI_OK)
   {
      WriteRawRC(RegPage,0x80); // Dummy access in order to determine the bus
	  for(i=0;i<15;i++);
	  status= ReadRawRC(RegCommand);
      if (status!=0x00)
      {                           
          status = MI_INTERFACEERR;
     }
	  else
	  {
       WriteRawRC(RegPage,0x00);;   // sequence is ok
	  }
   }
   return status;
}

char PcdRfReset(unsigned short ms)
{
   int   status = MI_OK;
   unsigned char i;
   ClearBitMask(RegTxControl,0x13);  // Tx2RF-En, Tx1RF-En disablen
   if (ms > 0)
   {
	  for(i=0;i<1050;i++);
      SetBitMask(RegTxControl,0x13);    // Tx2RF-En, Tx1RF-En enable
   }
   return status;
}
 

void PcdSetTmo(unsigned int tmoLength)
{
   switch(tmoLength)
   {  
      case 1:                         // short timeout (1,0 ms)
         WriteRC(RegTimerClock,0x07); // TAutoRestart=0,TPrescale=128
         WriteRC(RegTimerReload,0x6a);// TReloadVal = 'h6a =106(dec) 
         break;
      case 2:                       // medium timeout (1,5 ms)
         WriteRC(RegTimerClock,0x07); // TAutoRestart=0,TPrescale=128
         WriteRC(RegTimerReload,0xa0);// TReloadVal = 'ha0 =160(dec) 
         break;
      case 3:                       // long timeout (6 ms)
         WriteRC(RegTimerClock,0x09); // TAutoRestart=0,TPrescale=4*128
         WriteRC(RegTimerReload,0xa0);// TReloadVal = 'ha0 =160(dec) 
         break;
      case 4:                       // long timeout (9.6 ms)
         WriteRC(RegTimerClock,0x09); // TAutoRestart=0,TPrescale=4*128
         WriteRC(RegTimerReload,0xff);// TReloadVal = 'ff =255(dec) 
         break;
      default:                       // short timeout (1,0 ms)
         WriteRC(RegTimerClock,0x07); // TAutoRestart=0,TPrescale=128
         WriteRC(RegTimerReload,tmoLength);// TReloadVal = tmoLength
         break;
   }     
}
void SetBitMask(unsigned char reg,unsigned char mask) // 
{
   char   tmp    = 0x0;
   tmp = ReadRC(reg);
   WriteRC(reg,tmp | mask);  // set bit mask
}
void ClearBitMask(unsigned char reg,unsigned char mask) // 
{
   char   tmp    = 0x0;
   tmp = ReadRC(reg);
   WriteRC(reg,tmp & ~mask);  // clear bit mask
}
void FlushFIFO(void)
{  
   SetBitMask(RegControl,0x01);
}
#pragma interrupt_handler timer2_ovf_isr:5
void timer2_ovf_isr(void){
   TCNT2=0xb2;
   if(CountDown) 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -