📄 rfc2616.html
字号:
origin server
The server on which a given resource resides or is to be created.
proxy
An intermediary program which acts as both a server and a client
for the purpose of making requests on behalf of other clients.
Requests are serviced internally or by passing them on, with
possible translation, to other servers. A proxy MUST implement
both the client and server requirements of this specification. A
"transparent proxy" is a proxy that does not modify the request or
response beyond what is required for proxy authentication and
identification. A "non-transparent proxy" is a proxy that modifies
the request or response in order to provide some added service to
the user agent, such as group annotation services, media type
transformation, protocol reduction, or anonymity filtering. Except
where either transparent or non-transparent behavior is explicitly
stated, the HTTP proxy requirements apply to both types of
proxies.
gateway
A server which acts as an intermediary for some other server.
Unlike a proxy, a gateway receives requests as if it were the
origin server for the requested resource; the requesting client
may not be aware that it is communicating with a gateway.
tunnel
An intermediary program which is acting as a blind relay between
two connections. Once active, a tunnel is not considered a party
to the HTTP communication, though the tunnel may have been
initiated by an HTTP request. The tunnel ceases to exist when both
ends of the relayed connections are closed.
cache
A program's local store of response messages and the subsystem
that controls its message storage, retrieval, and deletion. A
cache stores cacheable responses in order to reduce the response
time and network bandwidth consumption on future, equivalent
requests. Any client or server may include a cache, though a cache
cannot be used by a server that is acting as a tunnel.
cacheable
A response is cacheable if a cache is allowed to store a copy of
the response message for use in answering subsequent requests. The
rules for determining the cacheability of HTTP responses are
defined in section 13. Even if a resource is cacheable, there may
be additional constraints on whether a cache can use the cached
copy for a particular request.
Fielding, et al. Standards Track [Page 10]
<HR>
<A href="rfc2616.html">RFC 2616</A> HTTP/1.1 June 1999
first-hand
A response is first-hand if it comes directly and without
unnecessary delay from the origin server, perhaps via one or more
proxies. A response is also first-hand if its validity has just
been checked directly with the origin server.
explicit expiration time
The time at which the origin server intends that an entity should
no longer be returned by a cache without further validation.
heuristic expiration time
An expiration time assigned by a cache when no explicit expiration
time is available.
age
The age of a response is the time since it was sent by, or
successfully validated with, the origin server.
freshness lifetime
The length of time between the generation of a response and its
expiration time.
fresh
A response is fresh if its age has not yet exceeded its freshness
lifetime.
stale
A response is stale if its age has passed its freshness lifetime.
semantically transparent
A cache behaves in a "semantically transparent" manner, with
respect to a particular response, when its use affects neither the
requesting client nor the origin server, except to improve
performance. When a cache is semantically transparent, the client
receives exactly the same response (except for hop-by-hop headers)
that it would have received had its request been handled directly
by the origin server.
validator
A protocol element (e.g., an entity tag or a Last-Modified time)
that is used to find out whether a cache entry is an equivalent
copy of an entity.
upstream/downstream
Upstream and downstream describe the flow of a message: all
messages flow from upstream to downstream.
Fielding, et al. Standards Track [Page 11]
<HR>
<A href="rfc2616.html">RFC 2616</A> HTTP/1.1 June 1999
inbound/outbound
Inbound and outbound refer to the request and response paths for
messages: "inbound" means "traveling toward the origin server",
and "outbound" means "traveling toward the user agent"
1.4 Overall Operation
The HTTP protocol is a request/response protocol. A client sends a
request to the server in the form of a request method, URI, and
protocol version, followed by a MIME-like message containing request
modifiers, client information, and possible body content over a
connection with a server. The server responds with a status line,
including the message's protocol version and a success or error code,
followed by a MIME-like message containing server information, entity
metainformation, and possible entity-body content. The relationship
between HTTP and MIME is described in appendix 19.4.
Most HTTP communication is initiated by a user agent and consists of
a request to be applied to a resource on some origin server. In the
simplest case, this may be accomplished via a single connection (v)
between the user agent (UA) and the origin server (O).
request chain ------------------------>
UA -------------------v------------------- O
<----------------------- response chain
A more complicated situation occurs when one or more intermediaries
are present in the request/response chain. There are three common
forms of intermediary: proxy, gateway, and tunnel. A proxy is a
forwarding agent, receiving requests for a URI in its absolute form,
rewriting all or part of the message, and forwarding the reformatted
request toward the server identified by the URI. A gateway is a
receiving agent, acting as a layer above some other server(s) and, if
necessary, translating the requests to the underlying server's
protocol. A tunnel acts as a relay point between two connections
without changing the messages; tunnels are used when the
communication needs to pass through an intermediary (such as a
firewall) even when the intermediary cannot understand the contents
of the messages.
request chain -------------------------------------->
UA -----v----- A -----v----- B -----v----- C -----v----- O
<------------------------------------- response chain
The figure above shows three intermediaries (A, B, and C) between the
user agent and origin server. A request or response message that
travels the whole chain will pass through four separate connections.
This distinction is important because some HTTP communication options
Fielding, et al. Standards Track [Page 12]
<HR>
<A href="rfc2616.html">RFC 2616</A> HTTP/1.1 June 1999
may apply only to the connection with the nearest, non-tunnel
neighbor, only to the end-points of the chain, or to all connections
along the chain. Although the diagram is linear, each participant may
be engaged in multiple, simultaneous communications. For example, B
may be receiving requests from many clients other than A, and/or
forwarding requests to servers other than C, at the same time that it
is handling A's request.
Any party to the communication which is not acting as a tunnel may
employ an internal cache for handling requests. The effect of a cache
is that the request/response chain is shortened if one of the
participants along the chain has a cached response applicable to that
request. The following illustrates the resulting chain if B has a
cached copy of an earlier response from O (via C) for a request which
has not been cached by UA or A.
request chain ---------->
UA -----v----- A -----v----- B - - - - - - C - - - - - - O
<--------- response chain
Not all responses are usefully cacheable, and some requests may
contain modifiers which place special requirements on cache behavior.
HTTP requirements for cache behavior and cacheable responses are
defined in section 13.
In fact, there are a wide variety of architectures and configurations
of caches and proxies currently being experimented with or deployed
across the World Wide Web. These systems include national hierarchies
of proxy caches to save transoceanic bandwidth, systems that
broadcast or multicast cache entries, organizations that distribute
subsets of cached data via CD-ROM, and so on. HTTP systems are used
in corporate intranets over high-bandwidth links, and for access via
PDAs with low-power radio links and intermittent connectivity. The
goal of HTTP/1.1 is to support the wide diversity of configurations
already deployed while introducing protocol constructs that meet the
needs of those who build web applications that require high
reliability and, failing that, at least reliable indications of
failure.
HTTP communication usually takes place over TCP/IP connections. The
default port is TCP 80 [19], but other ports can be used. This does
not preclude HTTP from being implemented on top of any other protocol
on the Internet, or on other networks. HTTP only presumes a reliable
transport; any protocol that provides such guarantees can be used;
the mapping of the HTTP/1.1 request and response structures onto the
transport data units of the protocol in question is outside the scope
of this specification.
Fielding, et al. Standards Track [Page 13]
<HR>
<A href="rfc2616.html">RFC 2616</A> HTTP/1.1 June 1999
In HTTP/1.0, most implementations used a new connection for each
request/response exchange. In HTTP/1.1, a connection may be used for
one or more request/response exchanges, although connections may be
closed for a variety of reasons (see section 8.1).
2 Notational Conventions and Generic Grammar
2.1 Augmented BNF
All of the mechanisms specified in this document are described in
both prose and an augmented Backus-Naur Form (BNF) similar to that
used by <A href="../../../../rfc.net/rfc822.html">RFC 822</A> [9]. Implementors will need to be familiar with the
notation in order to understand this specification. The augmented BNF
includes the following constructs:
name = definition
The name of a rule is simply the name itself (without any
enclosing "<" and ">") and is separated from its definition by the
equal "=" character. White space is only significant in that
indentation of continuation lines is used to indicate a rule
definition that spans more than one line. Certain basic rules are
in uppercase, such as SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle
brackets are used within definitions whenever their presence will
facilitate discerning the use of rule names.
"literal"
Quotation marks surround literal text. Unless stated otherwise,
the text is case-insensitive.
rule1 | rule2
Elements separated by a bar ("|") are alternatives, e.g., "yes |
no" will accept yes or no.
(rule1 rule2)
Elements enclosed in parentheses are treated as a single element.
Thus, "(elem (foo | bar) elem)" allows the token sequences "elem
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -