⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 facescan.m

📁 基于贝叶斯理论的指纹识别算法及学习套件, 使用贝叶斯概率论实现对指纹识别,特征码提取,特征对数获取的功能
💻 M
字号:
% Author: Scott Sanner% Email:  ssanner@cs.stanford.edu% Course: CS223B, Winter% Desc:   Build an image resolution pyramid and scan the pyramid for%         faces given the neural net, image, mask, and threshold -1<THR<1%% [RECT, IMR] = facescan(NET, IM, MASK, THR, LEVELS, START, SCALEFACT, STEP)function [RECT, IMR] = facescan(NET, IM, MASK, THR, LEVELS, START, SCALEFACT, STEP)% START can be 1, but use to ignore smaller rectangles (level to start at)% THR is good around .4 - .6% STEP is good at 2% LEVELS is good at 6 (number of pyramid levels with 1 being initial image)% SCALEFACT is good at 1.2% SetupPYR_MAX = LEVELS; % A good choice is 6MROWS = size(MASK,1);MCOLS = size(MASK,2);IROWS = size(IM, 1);ICOLS = size(IM, 2);RECT = [];% Build the image pyramidSCALE = SCALEFACT; % A good choice is 1.2PYR{1} = IM;XRANGE{1} = 1:1:ICOLS;YRANGE{1} = 1:1:IROWS;[MX{1},MY{1}] = meshgrid(XRANGE{1}, YRANGE{1});for i=2:PYR_MAX,	XRANGE{i} = 1:SCALE.^(i-1):ICOLS;	YRANGE{i} = 1:SCALE.^(i-1):IROWS;	[MX{i},MY{i}] = meshgrid(XRANGE{i}, YRANGE{i});	PYR{i} = interp2(MX{1}, MY{1}, PYR{1}, MX{i}, MY{i});end% View pyramid%figure(1);%colormap(gray);%showimages(PYR, 2, 3, 1, 6, 1);%drawnow;%pause;% Scan the pyramidfor im_num = START:PYR_MAX,  fprintf(1, '\n\nImage: %d\n', im_num);  for im_row = 1:STEP:size(PYR{im_num},1)-MROWS+1,    fprintf(1, ' R:%d', im_row);    for im_col = 1:STEP:size(PYR{im_num},2)-MCOLS+1,	TEST = classifynn(NET, PYR{im_num}, MASK, im_row, im_col);        if (TEST > THR)	   fprintf(1, '\n  -(INUM,R,C,TEST): [%d] (%d,%d) => %5.3f   ',im_num, im_row, im_col, TEST);	   RECT = [RECT; (im_row/size(YRANGE{im_num},2))*size(YRANGE{1},2), ...                         (im_col/size(XRANGE{im_num},2))*size(XRANGE{1},2), ...                         ((im_row+MROWS-1)/size(YRANGE{im_num},2))*size(YRANGE{1},2), ...                         ((im_col+MCOLS-1)/size(XRANGE{im_num},2))*size(XRANGE{1},2), ...                          TEST];	end    end  endend% Plot the bounding boxes in an image to returnIMR = IM;for i=1:size(RECT,1),  SR = ceil(RECT(i,1));   ER = ceil(RECT(i,3));   SC = ceil(RECT(i,2));   EC = ceil(RECT(i,4));  IMR(SR,SC:EC) = 0;   IMR(ER,SC:EC) = 0;   IMR(SR:ER,SC) = 0;  IMR(SR:ER,EC) = 0;end% Plot the imagefigure(2);colormap(gray);imagesc(IMR);drawnow;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -