⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 covnoise.m

📁 高斯过程在回归和分类问题中的应用
💻 M
字号:
function [A, B] = covNoise(logtheta, x, z);% Independent covariance function, ie "white noise", with specified variance.% The covariance function is specified as:%% k(x^p,x^q) = s2 * \delta(p,q)%% where s2 is the noise variance and \delta(p,q) is a Kronecker delta function% which is 1 iff p=q and zero otherwise. The hyperparameter is%% logtheta = [ log(sqrt(s2)) ]%% For more help on design of covariance functions, try "help covFunctions".%% (C) Copyright 2006 by Carl Edward Rasmussen, 2006-03-24.if nargin == 0, A = '1'; return; end              % report number of parameterss2 = exp(2*logtheta);                                          % noise varianceif nargin == 2                                      % compute covariance matrix  A = s2*eye(size(x,1));elseif nargout == 2                              % compute test set covariances  A = s2;  B = 0;                               % zeros cross covariance by independenceelse                                                % compute derivative matrix  A = 2*s2*eye(size(x,1));end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -