⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 covrqard.m

📁 高斯过程在回归和分类问题中的应用
💻 M
字号:
function [A, B] = covRQard(logtheta, x, z)% Rational Quadratic covariance function with Automatic Relevance Determination% (ARD) distance measure. The covariance function is parameterized as:%% k(x^p,x^q) = sf2 * [1 + (x^p - x^q)'*inv(P)*(x^p - x^q)/(2*alpha)]^(-alpha)%% where the P matrix is diagonal with ARD parameters ell_1^2,...,ell_D^2, where% D is the dimension of the input space, sf2 is the signal variance and alpha% is the shape parameter for the RQ covariance. The hyperparameters are:%% loghyper = [ log(ell_1)%              log(ell_2)%               .%              log(ell_D)%              log(sqrt(sf2))%              log(alpha) ]%% For more help on design of covariance functions, try "help covFunctions".%% (C) Copyright 2006 by Carl Edward Rasmussen (2006-09-08)if nargin == 0, A = '(D+2)'; return; endpersistent K;[n D] = size(x);ell = exp(loghyper(1:D));sf2 = exp(2*loghyper(D+1));alpha = exp(loghyper(D+2));if nargin == 2  K = (1+0.5*sq_dist(diag(1./ell)*x')/alpha);  A = sf2*(K.^(-alpha));elseif nargout == 2                              % compute test set covariances  A = sf2*ones(size(z,1),1);  B = sf2*((1+0.5*sq_dist(diag(1./ell)*x',diag(1./ell)*z')/alpha).^(-alpha));else                                                % compute derivative matrix  % check for correct dimension of the previously calculated kernel matrix  if any(size(K)~=n)      K = (1+0.5*sq_dist(diag(1./ell)*x')/alpha);  end  if z <= D                                           % length scale parameters    A = sf2*K.^(-alpha-1).*sq_dist(x(:,z)'/ell(z));  elseif z == D+1                                         % magnitude parameter    A = 2*sf2*(K.^(-alpha));  else    A = sf2*K.^(-alpha).*(0.5*sq_dist(diag(1./ell)*x')./K - alpha*log(K));    clear K;  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -