⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 covseard.m

📁 高斯过程在回归和分类问题中的应用
💻 M
字号:
function [A, B] = covSEard(loghyper, x, z)% Squared Exponential covariance function with Automatic Relevance Detemination% (ARD) distance measure. The covariance function is parameterized as:%% k(x^p,x^q) = sf2 * exp(-(x^p - x^q)'*inv(P)*(x^p - x^q)/2)%% where the P matrix is diagonal with ARD parameters ell_1^2,...,ell_D^2, where% D is the dimension of the input space and sf2 is the signal variance. The% hyperparameters are:%% loghyper = [ log(ell_1)%              log(ell_2)%               .%              log(ell_D)%              log(sqrt(sf2)) ]%% For more help on design of covariance functions, try "help covFunctions".%% (C) Copyright 2006 by Carl Edward Rasmussen (2006-03-24)if nargin == 0, A = '(D+1)'; return; end          % report number of parameterspersistent K;    [n D] = size(x);ell = exp(loghyper(1:D));                         % characteristic length scalesf2 = exp(2*loghyper(D+1));                                   % signal varianceif nargin == 2  K = sf2*exp(-sq_dist(diag(1./ell)*x')/2);  A = K;                 elseif nargout == 2                              % compute test set covariances  A = sf2*ones(size(z,1),1);  B = sf2*exp(-sq_dist(diag(1./ell)*x',diag(1./ell)*z')/2);else                                                % compute derivative matrix    % check for correct dimension of the previously calculated kernel matrix  if any(size(K)~=n)      K = sf2*exp(-sq_dist(diag(1./ell)*x')/2);  end     if z <= D                                           % length scale parameters    A = K.*sq_dist(x(:,z)'/ell(z));    else                                                    % magnitude parameter    A = 2*K;    clear K;  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -