📄 covseard.m
字号:
function [A, B] = covSEard(loghyper, x, z)% Squared Exponential covariance function with Automatic Relevance Detemination% (ARD) distance measure. The covariance function is parameterized as:%% k(x^p,x^q) = sf2 * exp(-(x^p - x^q)'*inv(P)*(x^p - x^q)/2)%% where the P matrix is diagonal with ARD parameters ell_1^2,...,ell_D^2, where% D is the dimension of the input space and sf2 is the signal variance. The% hyperparameters are:%% loghyper = [ log(ell_1)% log(ell_2)% .% log(ell_D)% log(sqrt(sf2)) ]%% For more help on design of covariance functions, try "help covFunctions".%% (C) Copyright 2006 by Carl Edward Rasmussen (2006-03-24)if nargin == 0, A = '(D+1)'; return; end % report number of parameterspersistent K; [n D] = size(x);ell = exp(loghyper(1:D)); % characteristic length scalesf2 = exp(2*loghyper(D+1)); % signal varianceif nargin == 2 K = sf2*exp(-sq_dist(diag(1./ell)*x')/2); A = K; elseif nargout == 2 % compute test set covariances A = sf2*ones(size(z,1),1); B = sf2*exp(-sq_dist(diag(1./ell)*x',diag(1./ell)*z')/2);else % compute derivative matrix % check for correct dimension of the previously calculated kernel matrix if any(size(K)~=n) K = sf2*exp(-sq_dist(diag(1./ell)*x')/2); end if z <= D % length scale parameters A = K.*sq_dist(x(:,z)'/ell(z)); else % magnitude parameter A = 2*K; clear K; endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -