⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 covlinard.m

📁 高斯过程在回归和分类问题中的应用
💻 M
字号:
function [A, B] = covLINard(logtheta, x, z);% Linear covariance function with Automatic Relevance Determination (ARD). The% covariance function is parameterized as:%% k(x^p,x^q) = x^p'*inv(P)*x^q%% where the P matrix is diagonal with ARD parameters ell_1^2,...,ell_D^2, where% D is the dimension of the input space. The hyperparameters are:%% logtheta = [ log(ell_1)%              log(ell_2)%               .%              log(ell_D) ]%% Note that there is no bias term; use covConst to add a bias.%% For more help on design of covariance functions, try "help covFunctions".%% (C) Copyright 2006 by Carl Edward Rasmussen (2006-03-24)if nargin == 0, A = 'D'; return; end              % report number of parametersell = exp(logtheta);x = x*diag(1./ell);if nargin == 2  A = x*x';elseif nargout == 2                              % compute test set covariances  z = z*diag(1./ell);  A = sum(z.*z,2);  B = x*z';else                                              % compute derivative matrices  A = -2*x(:,z)*x(:,z)';end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -